Preferred Language
Articles
/
oxeYYI8BVTCNdQwCiXRB
Linear Regression Model Using Bayesian Approach for Iraqi Unemployment Rate

In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decades.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
Fuzzy Entropy in Adaptive Fuzzy Weighted Linear Regression Analysis with Application to Estimate Infant Mortality Rate

An adaptive fuzzy weighted linear regression model in which the output is based
on the position and entropy of quadruple fuzzy numbers had dealt with. The solution
of the adaptive models is established in terms of the iterative fuzzy least squares by
introducing a new suitable metric which takes into account the types of the influence
of different imprecisions. Furthermore, the applicability of the model is made by
attempting to estimate the fuzzy infant mortality rate in Iraq using a selective set of
inputs.

View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Detecting Outliers In Multiple Linear Regression

It is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases :  first, in real data; and secondly,  after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for  comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.

Crossref
View Publication Preview PDF
Publication Date
Sun Jan 14 2024
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
Using Nonparametric Procedure to Develop an OCMT Estimator for Big Data Linear Regression Model with Application Chemical Pollution in the Tigris River

Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi

... Show More
Crossref
View Publication
Publication Date
Thu Jun 02 2011
Journal Name
Ibn Al-haithem Journal For Pure And Applied Sciences
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimation methods for regression model parametersIn the case of the problem of linear multiplicity and abnormal values

 A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators

Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
ESTIMATION OF COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES WITH APPLICATIONS

In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme  value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS  & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations

Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Maximum Likelihood and Bayesian Methods For Estimating The Gamma Regression With Practical Application

In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da

... Show More
Crossref
View Publication Preview PDF