In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decades.
A dust storm in Iraq is a climatic phenomenon common in arid and semi-arid regions . The frequency of the occurrence has increased drastically in the last decade and it is increasing continuously .Baghdad city like the rest of Iraq is suffering from the significant increase in dust storms . In this research , the study of the phenomenon of dust storms for all types (Suspended dust , rising dust , dust storm) , and its relationship with some climate variables (Temperature , rainfall ,wind speed) .The statement of the impact of climate change on this phenomenon to Baghdad station for the period (1981 – 2012) . Time series has been addressing the phenomenon of storms and cli
... Show More