This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of data, cost savings, and the pace of business completion. Therefore, relying on auditing a large volume of financial data is insufficient. The Metaverse is a novel technological advancement seeking to fundamentally transform corporate operations and interpersonal interactions. Metaverse has implications for auditing and accounting practices, particularly concerning a company’s operational and financial aspects. Economic units have begun to switch from traditional methods of registration and posting to using software for financial operations to limit earnings management. Therefore, this research proposes applying one of the Data Mining techniques, namely the logistical regression technique, to reduce earning management in a sample of Iraqi private banks, including (11) banks. Accounting ratios were employed, followed by Logistic Regression, to achieve earnings management within the proportions.
Mangrove landscaping in the Segara Anakan Lagoon (SAL) is an adaptation pattern of mangrove ecosystems to live and grow in unstable areas. This research aimed to develop a mangrove landscape to mitigate the impacts of ocean waves, currents, and inundation due to climate change. The study was conducted in SAL and Cilacap Coast (CC) using the environmental properties and climate change data. The data obtained were analyzed using mapping and trendline analyses. The results showed that mangrove landscaping in Segara Anakan had four zones with Nypa frutican, Rhizophora styllosa, Aegiceras corniculatum, Rhizophora apiculata, Avicennia marina, Sonneratia alba identified as the best adaptation of mangrove species. Climate change give a high impa
... Show MoreThe paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreThe research aimed to prepare a psychological counseling program for the coaches of the Sports Care Center in the gymnasium, and to learn about the impact of the psychological counseling program in reducing irrational ideas and causal attribution of the coaches of the Sports Talent Care Center in the gymnasium, to assume that there are statistically significant differences between the results of the tribal and posttests of the research group Experimental in the scale of irrational ideas, and there are statistically significant differences between the results of the tribal and posttests of the experimental research group in the scale of the causal attribution scale, The experimental approach was adopted by designing one experimental
... Show MoreBig data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide
... Show MoreThe goal of this study is to build an application that can be used in difficult cases and sudden circumstances during the pandemic and post-disaster state, which can be the development of digital risk management and mitigating the difficult impact of the epidemic through the improvement of IT and IoT that can be fine by finding initial solutions and make the world like a digital city that could be managed by the network. We provide this study to gain an overview of reasons for delayed and exceeded costs in a select of thirty Iraqi case projects by controlling the time and cost. The drivers of delay have been investigated in multiple countries/contexts. however, there is little country data available under the conditions that have ch
... Show MoreSeveral correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show More