This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of data, cost savings, and the pace of business completion. Therefore, relying on auditing a large volume of financial data is insufficient. The Metaverse is a novel technological advancement seeking to fundamentally transform corporate operations and interpersonal interactions. Metaverse has implications for auditing and accounting practices, particularly concerning a company’s operational and financial aspects. Economic units have begun to switch from traditional methods of registration and posting to using software for financial operations to limit earnings management. Therefore, this research proposes applying one of the Data Mining techniques, namely the logistical regression technique, to reduce earning management in a sample of Iraqi private banks, including (11) banks. Accounting ratios were employed, followed by Logistic Regression, to achieve earnings management within the proportions.
The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
Stick-slip is kind of vibration which associated with drilling operation in around the bottom hole assembly (BHA) due to the small clearance between drill string & the open hole and due to the eccentric rotating of string. This research presents results of specific experimental study that was run by using two types of drilling mud (Fresh water Bentonite & Polymer), with/without Nanoparticle size materials of MgO in various ratios and computes the rheological properties of mud for each concentration [Yield point, plastic viscosity, Av, PH, filter loss (30 min), filter cake, Mud Cake Friction, Friction Factor]. These results then were used to find a clear effects of Nanoparticle drilling mud rheology on stick - slip strength by sev
... Show MoreThe study aims to integrate the visually impaired people into the art connoisseur community through producing special print artworks to enable the visually impaired people to use their other senses to feel artworks by using artistic printing techniques through adding some prominent materials to the printing colors or making an impact that visually impaired people can perceive using their other senses. This study also aims to set up art exhibitions that display tangible works that can enable visually impaired people to feel artwork and understand its elements to enable them to feel it through other senses.
The study follows the experimental method, through using artistic printing techniques, which allow printing with prominent textur
We use of multi-choice Goal Programming (MCGP), which is a developed model of Goal Programming where it is used in circumstances of the multiplicity and difference of goals when choosing between decision alternatives in cases of allocating resources, as it is a model that seeks to find the closest and best solutions to the specific values of the goals within the aspiration levels, as the first goal in the multi-choice goal programming model that is used to reduce the total cost of storage and shortage, while the other goal was to reduce the difference between the real demand that the hospitals need from the blood transfusion center and the units that already achieved. The case Iraqi Center
... Show MoreIndividuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreThe segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussia
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-
... Show More