2-(2-amino-5-nitro-phenylazo),-phenol was ready by grouping the diazonium salt of 2-aminophenol with 4-nitroaniline.Thegeometry of azo ligand(HL)was resolved on the origin of (C.H.N) analysis,1H and 13CNMR spectra, infrared spectra and UV–vis electronic absorption spectra. Dealing with the azo ligand produced with Rh+3 and La+3ataqueous ethanol for a 1:3 metal: ligand rate, and in perfect ph. The formation for compounds have been described by utilizing flame atomic, absorption,(C.H.N),Analyses, conductivity, infrared spectra and UV–vis spectral procedures. Nature in the produced compounds, have been studied, obey the ratio of mole and continuous, variance, manners, Beer's law, yielded up a concentration, rate (1×10-4- 3×10-4M),. High molar, absorbent, have been observed from compound solutions. At the origin data an octahedral geometry were assigned for the produced complexes. Biological activity of the produced compounds was assayed. In appending, the dyeing carried out of these compounds was practical above cotton fabric. The dyes were light and detergent stability.
The preparation of a new Azo compounds of highly conjugated dimeric and polymeric liquid crystal to achieve the crystalline characteristics Which have structures assigned based on elemental analysis, IR 1HNMR and CHNS-O while mesogenic properties have been set for DSC and hot-stage polarizing optical microscopy. The compounds show enantiotropicnematic phase being displayed. The compounds show photoluminescence properties in the organic solution at room temperature, with the fluorescence band centered around 400 nm.
This investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show MoreThis work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivit
... Show MoreThe complexes of the 2-hydroxy-4-Nitro phenyl piperonalidene with metal ions Cr(III), Ni(II), Pt(IV) and Zn(II) were prepared in ethanolic solution. These complexes were characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was study following the molar ratio method. From the spectral studies, monomer structures proposed for the nickel (II) and Zinc (II) complexes while dimeric structures for the chromium (III) and platinum (IV) were proposed. Octahedral geometry was suggested for all prepared complexes except zinc (II) has tetrahedral geometry, Structural geometries of these compounds were also suggested in gas phase by using
... Show MorePathogenic microorganisms are becoming more and more resistant to antimicrobial agents. So the synthesis of new antimicrobial agents is very important. In this work, new 5-fluoroisatin-chalcone conjugates 5(a–g) were synthesized based on previous research that showed the modifications of the isatin moiety led to the synthesis of many derivatives that have antimicrobial activity. 4-aminoacetophenone reacts with 5-fluoroisatin to form Schiff base (3), which in turn reacts with two different groups of aromatic (carbocyclic and heterocyclic) aldehydes 4(a–g) separately to form the final compounds 5(a–g). Proton-nuclear magnetic resonance (¹H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy were used to confirm the chemic
... Show MorePyridine-2, 6-dicarbohydrazide comp (2) was synthesized from ethanolic solution of diethyl pyridine-2, 6- dicarboxylate comp (1) with excess of hydrazine hydrate. Newly five polymers (P1-P5) were synthesized from reaction of pyridine-2, 6-dicarbohydrazide comp (2) with five different di carboxylic acid in the presence of poly phosphoric acid (PPA). The antibacterial activity of the synthesized polymers was screened against some gram positive and gram negative bacteria. Antifungal activity of these polymers was evaluated in vitro against some yeast like fungi such as albicans (candida albicans). Polymers P3, P4 and P5 exhibited highest antibacterial and antifungal against all microorganisms under test.
New complexes of the some trivalent transition metal ions of the uracil such as [M(Ura)3Cl3] and mixed ligand metal complexes with uracil and oxalic acid [M(Ura)2(OA)(OH2)Cl].H2O type, where (Ura)=Uracil, (OA= Oxalic acid dihydrate, (M= Cr+3 and Fe+3) were synthesized and characterized by the elemental analysis, FT.IR, electronic spectra, mass spectra and magnetic susceptibility as well as the conductivity measurements. Six–coordinated metal complexes were suggested for the isolated complexes of Cr+3 and Fe+3 with molecular formulas dependent on the nature of uracil and oxalic acid present. The proposed molecular structure for all complexes with their ions is octahedral geometries. The antibacterial efficiency was tested of metal salts, l
... Show MoreNew ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
The synthesis of ligands with N2S2 donor sets that include imine, an amide, thioether, thiolate moieties and their metal complexes were achieved. The new Schiff-base ligands; N-(2-((2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio)-acetamide (H2L1) and N-(2-((2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio) acetamide (H2L2) were obtained from the reaction of amine precursors with 1,4-dithian-2-one in the presence of triethylamine as a base in the CHCl3 medium. Complexes of the general formula K2<