The experiment was conducted at the plant tissue culture laboratory of the Department of Horticulture and Garden Engineering College of Agricultural Engineering Sciences, University of Baghdad, in order to study the effect of some growth regulators on propagation an stimulation production of volatile oil compounds of rosemary plant Rosmarinus officinlis using two vegetative parts (apical and lateral buds). Factorial experiment was implemented in completely randomized design with twenty replications. The results indicated that culturing the apical meristem on the medium Murashige and Skoog (MS) media with 0.5 mg.l-1 (BA) with 0.1 mg.l-1 of NAA gave the highest response rate of 100%. As for the doubling stage, the levels of BAA and IAA (Indole acetic acid), and their interaction showed a significant effect on the number and length of branches, fresh and dry weight. The treatment of 0.5 mg.liter -1 of BA with 0.0 mg.liter -1 of IAA gave the highest number of branches (5.9 branches.plant-1), and fresh and dry weight (4272and446.2 mg), respectively. Whereas the treatment of 1.5 mg. liter -1 of BA with 0.3 mg. liter -1 of IAA gave the highest length of doubled branches (5.2 cm). The use of BA at a concentration of 0.5 mg.liter-1 was found to increase the active compounds in the volatile oil compared to the MS media free of growth regulator. The best rooting rate of branching was achieved in MS media with complete and half the strength of salts supplied with IBA at a concentration of 0.5 mg.liter-1 or at a concentration of 1 mg. liter -1, where it reached 90%. In addition, the highest number of roots and their lengths in MS media achieved in half of the strength of salts supplied with IBA at a concentration of 0.5 mg.liter-1 reached 5 root. rooted branch-1 and 5.30 cm, respectively. The relative survival rate of the adapted plantlet was 90%
Objectives: Umbilical cord blood can be taken at birth and largely gives indication of fetal and maternal conditions. The aim of the study was to investigate the relation between sex hormones in cord blood and birth weight of newborns and pregnancy complications. Methods: Fifty cord blood samples were collected from newborns at labor room of Baghdad Teaching Hospital between May and October 2018. Blood was withdrawn from their mothers for lead analysis. Five milliliters (ml) of cord blood was taken, 3 ml was used for testosterone and estradiol analysis (using enzyme-linked immunosorbent assay) and 2 ml for lead measurement by lead care analyzer. Newborns weight and head circumference were measured. Delivered women were divided into four gro
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreVision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are app
In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreCyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pix
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show More