Preferred Language
Articles
/
ohevJJIBVTCNdQwCW578
Preparation and Evaluation of Atenolol Floating Beads as a Controlled Delivery System
...Show More Authors

         This study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepared atenolol beads remained floating on 0.1 N HCl (pH 1.2) medium over 24 hours. Besides, high yield beads of 73.07- 84.31% was obtained. Encapsulation efficiencies were in the range of 33.10 % -79.04 %, and were found to increase as a function of increasing drug: polymer mixture ratio and the gelling agent concentrations.Moreover, atenolol release profile from the beads was affected by the pH of the dissolution medium. It was found to be slowest in 0.1 N HCl (pH 1.2) and fastest in phosphate buffer (pH 6.8).The obtained results suggest that atenolol could be formulated as a controlled release beads, using ethylcellulose and alginate as polymers, using ACPD method. Keywords: Floating beads, Atenolol, Controlled Delivery System

Crossref
Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>2.4</sub>Ag<sub>0.6</sub>O<sub>8+δ</sub> Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Nov 01 2010
Journal Name
Al-nahrain Journal Of Science
Chemical Elements Diffusion in the Solar Interior
...Show More Authors