Electronic properties such as density of state, energy gap, HOMO (the highest occupied molecular orbital) level, LUMO (the lowest unoccupied molecular orbital) level and density of bonds, as well as spectroscopic properties like infrared (IR), Raman scattering, force constant, and reduced masses for coronene C24, reduced graphene oxide (rGO) C24O5and interaction between C24O5and NO2gas molecules were investigated. Density functional theory (DFT) with the exchange hybrid function B3LYP with 6-311G** basis sets through the Gaussian 09 W software program was used to do these calculations. Gaussian view 05 was employed as a supplementary software to investigate the geometrical structure of C24, C24O5and the interaction of C24O5with NO2gas molecule. It shows the energy gap of coronene C243.5 eV because the effect of quantum confinement and the Coulomb interaction geometry greatly influence the quasi-particle band gap and C24Oxwhere x = 1–7 was from 0.89 eV to 1.6862 eV a function of number of oxygen atoms and compared with the experiment value of graphene oxide which was between 1 eV and 2.2 eV. The spectroscopic properties were compared with the experiment value of graphene, graphene oxide and NO2longitudinal optical (LO) modes of 1 585, 1 582 and 1 600 cm−1, respectively. The transition state of the interaction of rGO with nitrogen dioxide and Gibbs energy, enthalpy, activation entropy and reaction at various temperatures between 25°C and 100°C were calculated. The activation energy of C24O5with nitrogen dioxide decreases with increasing temperature.
In this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreIn this work, Co-Y-oxide Nano Structure is successfully synthesized via hydrothermal method. The XRD analysis, SEM analysis, optical, electrical and photo sensing properties have been investigated for Co3O4 and Co-Y-oxide thin films. The X-ray diffraction (XRD) analysis reveals that all films are polycrystalline in nature, having cubic structure. The SEM images of thin films clearly indicates that Co3O4 possesses nanosphere like structure and flower like for Co-Y-oxide. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc equation and it increases for Co-Y-oxide. The photo sensing properties of thin films are investigated as a function of time at different wavelengths to
... Show MoreMetal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreThe aim of the research is to explain the nature of the relationship between the dimensions of the strategic recovery of the service represented by (compensation, speed of response, apology, initiative (defining the problem) and the strategic goals of the company represented in (profitability, growth, community service, employee satisfaction) in the National Insurance Company, it has been approved The questionnaire as a tool to collect data and information from the sample of (58) who are in (department manager, M. department director, division official, unit official) and the statistical program (spss) was used in calculating (arithmetic mean, standard deviation, coefficient of variation, coefficient of Correlation, t-test, varia
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show Moreالضاد والظاء موطن تفرد العربية وفخرها ، الفت فيهما العشرات والعشرات من المصنفات الثرّة لكثرة ذرائع تلابسهما والخلط بينهما ، فهما متشابهان في هيكل البناء ، وإخراجهما متداخل على اللسان ، وألفاظهما متناظرة برحابة في الإملاء ، فضلاعن اشكالهما إلى حدّ الآن ، مما حثني على التفكير في وسائل تسهل المطروح وتمد جسراً بين أجزائه عسى أن تدنو قطافه في دفع الشبهة ومواراتها ، فتحصلت لي امور ادرتها بكلمتين مف
... Show More