Soil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in predicting the Sr and Cr elements using spectroscopy, with coefficients R2 = 0.73 and RMSE = 63.8 for the determination, and R2 = 0.60 and RMSE = 16.4 for Cr, respectively. This research validates the detection of heavy metal contamination using reflectance spectroscopy. Results of the current study proved that some heavy elements have spectral features become either when their concentrations low or high, such as Cr, Sr, Cu and Zn. The current study opens new possibilities for studying these elements using remote sensing in the future.
The manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show MoreThis research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show MoreWe studied in this research how to find a method of estimating the quantity (Kinetically) of three kinds of Insecticide and their mixture, which are used in agriculture. The extracted insecticide from the polluted samples with these insect from air, soil, and the leaves of trees, have be used into the reaction with H2O2 and benzedine. The kinetic study of this reaction was formed in basic medium,( pH= 8.6), using UV. Spectra at (?= 420nm). The study showed that the reaction is the first order, and the speed of the reaction was used to estimate the concentration of insecticide in solution and mixture. The experiments of this study indicated that this method has the speed and efficiency for quantitatively estimating these
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreUntreated municipal solid waste (MSW) release onto land is prevalent in developing countries. To reduce the high levels of harmful components in polluted soils, a proper evaluation of heavy metal concentrations in Erbil's Kani Qrzhala dump between August 2021 and February 2022 is required. The purpose of this research was to examine the impact of improper solid waste disposal on soil properties within a landfill by assessing the risks of contamination for eight heavy elements in two separate layers of the soil by using geoaccumulation index (I-geo) and pollution load index (PLI) supported. The ArcGIS software was employed to map the spatial distribution of heavy element pollution and potential ecological risks. The I-geo values in summe
... Show MoreDiyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreComplexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.
This study aims to employ modern spatial simulation models to predict the future growth of Al-Najaf city for the year 2036 by studying the change in land use for the time period (1986-2016) because of its importance in shaping future policy for the planning process and decision-making process and ensuring a sustainable urban future, using Geographical information software programs and remote sensing (GIS, IDRISI Selva) as they are appropriate tools for exploring spatial temporal changes from the local level to the global scale. The application of the Markov chain model, which is a popular model that calculates the probability of future change based on the past, and the Cellular Automa
This research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg
... Show More