Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
In this research , the structural and optical properties of pure of cadmium oxide, pure (CdO) were studided thin films in a thermal evaporation in a vacuum depositing metal cadmium pure rules of the glass at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was oxidation of thin films cadmium (Cd) record temperature (673k) for a period of one hour to the presence of air optical energy gap for direct electronic transitions were calculated (permitted) as a function of absorption coefficient and permeability and reversibility by recording the spectrum absorbance and permeability of the membrane the record
... Show MoreThe crystal compounds Tl2-xAg2-ySryBayCa2Cu3O10+& are successfully prepared in different concentrations (x, y=0.1, 0.2, 0.3, 0.4, 0.5) by solid state reaction process. The samples were then subjected to Nano technique under hydrolic pressure 8 ton/cm2. samples have been annealed in (850 C0) for 72 hours. The results show a best value at x, y=0.3 ratio of Ag, Ba. Electrical resistivity at x, y= 0.3 of Ag, Ba are obtained when the best value of Tc= 141 K. Samples morphology were also observed by AFM (in three dimensions), the best value of Nano is 91.74 nm at x, y= 0.3. Morphological structures of the surface were also observed by (SEM) and (EDX) show that there are dark regions and light which indicate the presence of heavy elements a
... Show MorePbxCd1-xSe compound with different Pb percentage (i.e. X=0,
0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin films
were deposited by thermal evaporation on glass substrates at film
thickness (126) nm. The optical measurements indicated that
PbxCd1-xSe films have direct optical energy gap. The value of the
energy gap decreases with the increase of Pb content from 1.78 eV to
1.49 eV.
Studied the optical properties of the membranes CdS thin containing different ratios of ions cadmium to sulfur attended models manner spraying chemical gases on the rules of the glass temperature preparation (350c) were calculated energy gap allowed direct these membranes as observed decrease in the value of the energy gap at reducing the proportion ofsulfur ions as absorption coefficient was calculated
The alloys of CdSe1-xTex compound have been prepared from their elements successfully with high purity (99.9999%) which mixed stoichiometry ratio (x=0.0, 0.25, 0.5, 0.75 and 1.0) of (Cd, Se and Te) elements. Films of CdSe1-xTex alloys for different values of composition with thickness(0.5?m) have been prepared by thermal evaporation method at cleaned glass substrates which heated at (473K) under very low pressure (4×10-5mbar) at rate of deposition (3A?/s), after that thin films have been heat treated under low pressure (10-2mbar) at (523K) for two hours. The optical studies revealed that the absorption coefficient (?) is fairly high. It is found that the electronic transitions in the fundamental absorption edge tend to be allowed direct tr
... Show MoreIn this work, the superconducting CuBa2LaCa2Cu4O11+δ compound was prepared by citrate precursor method and the electrical and structural properties were studied. The electrical resistivity has been measured using four probe test to find the critical temperature Tc(offset) and Tc(onset). It was found that Tc (offset) at zero resistivity has 101 K and Tc (onset) has 116 K. The X-ray diffraction (XRD) analysis exhibited that a prepared compound has a tetragonal structure. The crystal size and microscopic strain due to lattice deformation of CuBa2LaCa2Cu4O11+δ were estimated by four methods, namely Scherer(S), Halder-Wagner(H-W), size-strain plot (SSP) and Williamson-Hall, (W-H) methods. Results of crystal sizes obtained by these meth
... Show MoreThe CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
Obliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.
Electrical properties were studied for Pectin/PVA graphene composites films and the effect of aqueous interaction on their properties. The conductivity and the dielectric constant of this composite are important because Polysaccharide like pectin is increasingly being used in biomedical applications and as nanoparticles coating materials. The Dielectric and conductivity of composite films were compared in dry and wet condition the differences in the results were attributed to the water molecules and the hydrogen bond which connect the three composite compounds (Pectin, PVA and Graphene) together. These connections were allowed the hydrogen and hydroxyl group’s migrations in the composite super molecules. On the other hand, graphene was pr
... Show More