Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files that are read and then processed by removing empty data and unifying the width of the signal at a length of 250 in order to remove noise accurately, and then performing the process of identifying the QRS in the first place and P-T implicitly, and then the task stage is determining the required peak and making a cut based on it. The U-Net pre-trained model is used for deep learning. It takes an ECG signal with a customisable sampling rate as input and generates a list of the beginning and ending points of P and T waves, as well as QRS complexes, as output. The distinguishing features of our segmentation method are its high speed, minimal parameter requirements, and strong generalization capabilities, which are used to create data that can be used in diagnosing diseases or biometric systems.
In our research, we dealt with one of the most important issues of linguistic studies of the Holy Qur’an, which is the words that are close in meaning, which some believe are synonyms, but in the Arabic language they are not considered synonyms because there are subtle differences between them. Synonyms in the Arabic language are very few, rather rare, and in the Holy Qur’an they are completely non-existent. And how were these words, close in meaning, translated in the translation of the Holy Qur’an by Almir Kuliev into the Russian language.
Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreIn this research we will present the signature as a key to the biometric authentication technique. I shall use moment invariants as a tool to make a decision about any signature which is belonging to the certain person or not. Eighteen voluntaries give 108 signatures as a sample to test the proposed system, six samples belong to each person were taken. Moment invariants are used to build a feature vector stored in this system. Euclidean distance measure used to compute the distance between the specific signatures of persons saved in this system and with new sample acquired to same persons for making decision about the new signature. Each signature is acquired by scanner in jpg format with 300DPI. Matlab used to implement this system.
Watermarking operation can be defined as a process of embedding special wanted and reversible information in important secure files to protect the ownership or information of the wanted cover file based on the proposed singular value decomposition (SVD) watermark. The proposed method for digital watermark has very huge domain for constructing final number and this mean protecting watermark from conflict. The cover file is the important image need to be protected. A hidden watermark is a unique number extracted from the cover file by performing proposed related and successive operations, starting by dividing the original image into four various parts with unequal size. Each part of these four treated as a separate matrix and applying SVD
... Show MoreWomen with diabetes in pregnancy (type 1, type 2 and gestational) are at increased risk for adverse pregnancy outcomes which also include infant development of congenital heart disease and even fetal death. Adequate glycemic control before and during pregnancy is crucial to improve outcome
The purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.
Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show More