Preferred Language
Articles
/
ohaMzIsBVTCNdQwCrt9L
USING ARTIFICIAL NEURAL NETWORK TECHNIQUE FOR THE ESTIMATION OF CD CONCENTRATION IN CONTAMINATED SOILS
...Show More Authors

The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this work show that the ANN technique trained on experimental measurements can be successfully applied to the rapid estimation of Cadmium concentration

View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Theoretical estimation of the trapping reaction rate for deuteron-deuteron fusion in nickel metal using Bose-Einstein condensates phenomena
...Show More Authors

A mathematical model has been introduced to investigate the effect of nuclear reaction constant ( A ), probability of the BEC ground state occupation Ω i, nD is the number density of deuteron (d) and the overall number of nuclei ND on the total nuclear d-d fusion rate (R). Under steady-state of the condensates of Bose-Einstein, the postulate of quantum theory and Bose-Einstein theory were applied to evaluate the total nuclear (d-d) fusion rate trapping in Nickel-metal The total nuclear fusion rate trapping predicts a strong relationship between astrophysical S-factor and masses of Nickel. The reaction rate trapping model was tested on three reaction d(d,p)T, d(d, n)3He and d(d, 4He)Q = 23.8MeV respectively. The reaction rate has described

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Advances In Intelligent Systems And Computing
Optimal Prediction Using Artificial Intelligence Application
...Show More Authors

View Publication
Scopus (12)
Crossref (11)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison for estimation methods for the autoregressive approximations
...Show More Authors

Abstract

      In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
An efficient of Sansevieriatrifasciataplantas biosorbent for the treatment of metal contaminated industrial effluents
...Show More Authors

Sansevieriatrifasciata was studied as a potential biosorbent for chromium, copper and nickel removal in batch process from electroplating and tannery effluents. Different parameters influencing the biosorption process such as pH, contact time, and amount of biosorbent were optimized while using the 80 mm sized particles of the biosorbent. As high as 91.3 % Ni and 92.7 % Cu were removed at pH of 6 and 4.5 respectively, while optimum Cr removal of 91.34 % from electroplating and 94.6 % from tannery effluents was found at pH 6.0 and 4.0 respectively. Pseudo second order model was found to best fit the kinetic data for all the metals as evidenced by their greater R2 values. FTIR characterization of biosorbent revealed the presence of carboxyl a

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Optimum conditions for ascorbic acid determination in three Iraqi citrus using HPLC technique
...Show More Authors

A high-performance liquid chromatography method was employed for the quantitative determination of ascorbic acid (AA) which called vitamin C in three types of Iraqi citrus (orange mandarin and aurantium ) and to establish this goal , evaluation of ascorbic acid degradation is so important due to its significant criticality when exposure to ordinary atmospheric conditions. The chromatographic analysis of AA was carried out after their sequential elution with KH2PO4 ( as mobile phase) by reverse-phase HPLC technique with C8 column and UV detection at 214 nm. .Bad resolutions was appeared clearly for C8 column , so another alternative condition were carried out to improve the resolution by replacement of C8 by C18 column .Statistical treat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Concentration of Orange Juice Using Forward Osmosis Membrane Process
...Show More Authors

Forward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions
...Show More Authors

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Itm Web Of Conferences
Embedded Neural Network like PID Water Heating Controller Implementing Cycle by Cycle Power Control Scheme
...Show More Authors

This paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics

... Show More
View Publication
Crossref