The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this work show that the ANN technique trained on experimental measurements can be successfully applied to the rapid estimation of Cadmium concentration
Leucine aminopepotidase (LAP)[EC:3.4.11.1] activity has been assayed in (50) serum samples of patients with diabeties naphrophathy D.N (non-insulin dependent diabetic (NIDD) , and (50)serum sample of healthy individuals without any clinically detectable diseases have been as control group. The aim of this study is to measure leucine aminopeptidase activity and partially purifying the enzyme from sera of patients with diabetes nephropathy The results of this study revealed that Leucine aminopeptidase (LAP) activity of nephropathy patient’s serum shows a high signifiacant increase (p < 0.001) compared to that of the healthy subjects.LAP was purified from the serum of patients with diabetes nephropathy by dialysis and gel filtration (Se
... Show MoreThis paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe
A high percentage of existing buildings in Iraq are traditional buildings, yet there is approximately no such green building in Baghdad or other governorates. Most of these buildings require urgent upgrading to increase their performance (operationally, economically, and environmentally), also the building owners looking for identifying and implementing many of the green building measures to reduce the operational and maintenance costs of their buildings. The decision-makers need to support the possibility of achieving sustainable measures of existing building rating systems such as LEED or BREEAM, and that would require an optimization model. The goal of this study is to maximize the
Multiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreKE Sharquie, AA Noaimi, ZN Al-Khafaji…, Journal of Cosmetics, Dermatological Sciences and Applications, 2016 - Cited by 2
The study aims to achieve several objectives, including follow-up scientific developments and transformations in the modern concepts of the Holistic Manufacturing System for the purpose of identifying the methods of switching to the entrances of artificial intelligence, and clarifying the mechanism of operation of the genetic algorithm under the Holonic Manufacturing System, to benefit from the advantages of systems and to achieve the maximum savings in time and cost of machines Using the Holistic Manufacturing System method and the Genetic algorithm, which allows for optimal maintenance time and minimizing the total cost, which in turn enables the workers of these machines to control the vacations in th
... Show MoreHydrophobic silica aerogels were successfully preparation by an ambient pressure drying method from sodium silicate (Na2SiO3) with different pH values (5, 6, 7, 8, 9 and 10). In this study, acidic HCl (1M), a basic NH4OH (1M) were selected as a catalyst to perform the surface modification in a TMCS (trimethylchlorosilane) solution. The surface chemical modification of the aerogels was assured by the Fourier transform infrared (FTIR) spectroscopic studies. Other physical properties, such as pore volume and pore size and specific surface area were determined by Brunauer-Emmett- Teller (BET) method. The effect of pH values on the bulk density of aerogel. The sol–gel parameter pH value in the sol, have marked effects on the physical proper
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More