Aim The aim of this study is to evaluate the effect of demographic, clinical, and radiographic factors on the duration of surgical extraction of impacted lower third molars. Materials and methods This retrospective study included patients who underwent surgical removal of impacted lower third molars, and the investigated factors were demographic data including age and gender, radiographic data including the impacted tooth angulation and depth of impaction and ramus relation, and clinical data including the state of eruption of the impacted teeth. These factors were evaluated for association with the duration of surgery. Descriptive statistical analysis included percentages and mean ± standard deviation (SD). Student's t-test was used to compare means between two groups, while for comparing the means among three or more groups for statistical significance, analysis of variance (ANOVA) test was used. Results Forty patients were included: 20 (50%) males and 20 (50%) females. The age range was from 17 to 37 years with a mean ± SD of 23.4 ± 5.016 years. The duration of surgery (± SD) in all the patients ranged from 10 to 40 minutes with a mean of 25.8 ± 8.56 minutes. Clinically unerupted teeth and deep ramus relationship were associated with statistically significant increase in duration of surgical extraction. Conclusion This study identifies state of eruption and ramus relation to be significant predictive factors, whereas other investigated factors, namely, age of patient, sex, angulation of teeth, and depth of impaction, were found to be not significant in determining the duration of surgery and hence, the difficulty of extraction. Clinical significance Duration of surgical extraction of impacted mandibular third molars can be considered as an indicator for difficulty of surgical extraction. Difficult surgical extraction of impacted mandibular third molars can be anticipated in clinically unerupted teeth and those with deep ramus relationship.
Background: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment.
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MoreBackground: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight
... Show MoreIn this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo
... Show MoreZ-scan has been utilized for studying the non-linear properties and optical limiting behaviors of the dye Copper Phthalocyanine thin films. The refractive index is negative, which indicates a self-defocusing behavior and non-linear absorption coefficient (