A water crisis is a circumstance in which a region accessible potable, unpolluted water is less than the requirement of that country. Two converging trends cause water scarcity, that are expanded use of irrigation, and loss of available freshwater supplies. Water scarcity can arise from two mechanisms, the physical water scarcity because of deficient natural water supply to fulfil the country demand, and economic water scarcity due to bad management for sufficient available water resources. This research examines data set as multispectral Landsat 8 satellite images that are detected for Basrah city, located in southern Iraq, and positioned between Kuwait and Iran on the Shatt al-Arab. Such raw data are satellite images. Using ENVI 5.3 software, they are handled and analyzed. The raster analyses are carried out using ArcGIS, where water characteristics are sorted. The outcomes are calculated and the water in the city is determined. This study reveals water scarcity and estimates it. While, the real estimation of water is highly expensive in comparison of human and machinery with regard to existing ones. For the future, in order to compare the proposed results of this study with the actual ones observed, it is planned to conduct underground water estimation of the area.
The possibility of implementing smart mobility in the traditional city: Studying the possibility of establishing an intelligent transportation system in the city center of Kadhimiya
A new, simple and sensitive spectrophotometric method for the determination of Thymol in pure and mouth wash preparations has been proposed in this study. The method was based on oxidation of 2,4-dinitrophenylhydrazine with potassium periodate and coupling with Thymol in alkaline medium to form an intense violet water-soluble dye that is stable and has a maximum absorption at 570 nm. A graph of absorbance versus concentration shows that Beer’s law was obeyed over the concentration range of 0.25-10 μg.mL-1 of Thymol, with detection limits of 0.063 μg.mL-1. All experimental parameters that affect the development and stability of the colored product were carefully studied and the proposed method was successfully applied to the determina
... Show More
One of the most important problems in concrete production in Iraq and other country is the high sulfate content in sand that led to damage of concrete and hence reduces its compressive strength and may leads to cracking due to internal sulfate attack and delay ettringite formation. The magnetic water treatment process is adopted in this study. Many samples with different SO3 content are treated with magnetic water (12, 8, 4 and 2)L that needed for each 1kg of sand with the magnetic intensity (9000 and 5000) Gaus. The magnetic water needed is reduced with less SO3 content in sand. The ACI 211.1-91 concrete mix design was used in this research with slump range (75- 100) mm and the specified compressive strength (35MPa). The compressive streng
... Show Morestudy was conducted on a stretch of Tigris river crossing Baghdad city to determine the concentration of some chlorophenols pollutants. Aqueous samples were preliminary enriched about 500 times and the chlorophenols have determined using high performance liquid chromatography HPLC. Limits of detection LOD were (0.007–0.012 mg L-1), relative standard deviations RSD% were 2.4%–5.59% and relative recoveries were 51.06%– 104.07%. The existence of chlorophenols in Tigris river was in the range 0.023–4.596 mg L-1. The developed method suggested in this study can be applied for routine analysis and monitoring of chlorinated phenols in environmental aqueous samples.
Trickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter disch
... Show MoreThe water resources, Groundwater and surface water, in Shanafiya – Samawa
area- southern Iraq were investigated using radium-226. The study examines the use
of radium as tracer whether saline surface water (Sawa Lake) seeps and interacts
with water of the Euphrates River and where groundwater interacts with surface
water, Euphrates, Atshan River and Sawa Lake. As well as examine the radiological
doses caused by consumption of these waters. Thirteen water samples were analysis
for radium-226 content by precipitation with barium carrier by using gamma
spectroscopy based on hyper-pure Germanium with efficiency 30%. The result
shows that Sawa Lake contains radium concentration higher than that of
groundwater and
Many studies and researchers have reported significant evidence that some physical properties of water can be changed as it passes through a magnetic field that can improve water use. This can have a promising potential for applications, especially in the fields of irrigation and drainage. In this research, magnetized water was used to leach salt-affected sandy loam soil. A test rig was designed and constructed to investigate the effects of magnetized water on leaching soil. The rig consists of a magnetization device that can provide variable intensity. Water was supplied from a constant head reservoir to the magnetization device then to the soils that were placed in plastic columns. Five different magnetic intensi
... Show More