A water crisis is a circumstance in which a region accessible potable, unpolluted water is less than the requirement of that country. Two converging trends cause water scarcity, that are expanded use of irrigation, and loss of available freshwater supplies. Water scarcity can arise from two mechanisms, the physical water scarcity because of deficient natural water supply to fulfil the country demand, and economic water scarcity due to bad management for sufficient available water resources. This research examines data set as multispectral Landsat 8 satellite images that are detected for Basrah city, located in southern Iraq, and positioned between Kuwait and Iran on the Shatt al-Arab. Such raw data are satellite images. Using ENVI 5.3 software, they are handled and analyzed. The raster analyses are carried out using ArcGIS, where water characteristics are sorted. The outcomes are calculated and the water in the city is determined. This study reveals water scarcity and estimates it. While, the real estimation of water is highly expensive in comparison of human and machinery with regard to existing ones. For the future, in order to compare the proposed results of this study with the actual ones observed, it is planned to conduct underground water estimation of the area.
In our research, we dealt with one of the most important issues of linguistic studies of the Holy Qur’an, which is the words that are close in meaning, which some believe are synonyms, but in the Arabic language they are not considered synonyms because there are subtle differences between them. Synonyms in the Arabic language are very few, rather rare, and in the Holy Qur’an they are completely non-existent. And how were these words, close in meaning, translated in the translation of the Holy Qur’an by Almir Kuliev into the Russian language.
Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].