Hypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid concentration thresholds above which storage efficiency may get influenced significantly. Findings These thresholds (defined for structural trapping as a water contact angle θ > 90°; and for capillary trapping when primary drainage is unaffected, i.e. θ > 50°) were very low for structural trapping (∼10−3–10−7 M organic acid concentration Corganic) and extremely low for capillary trapping (10−7 M to below 10−10 M Corganic). Since minute organic acid concentrations are always present in deep saline aquifers and certainly in depleted hydrocarbon reservoirs, significantly lower storage capacities and containment security than previously thought can be predicted in carbonate reservoirs, and reservoir-scale models and evaluation schemes need to account for these effects to de-risk CGS projects.
In this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog
... Show MoreIn this work semi–empirical method (PM3) calculations are carried out by (MOPAC) computational packages have been employed to calculate the molecular orbital's energies for some organic pollutants. The long– chain quaternary ammonium cations called Iraqi Clays (Bentonite – modified) are used to remove these organic pollutants from water, by adding a small cationic surfactant so as to result in floes which are agglomerates of organobentonite to remove organic pollutants. This calculation which suggests the best surface active material, can be used to modify the adsorption efficiency of aniline , phenol, phenol deriviatives, Tri methyl glycine, ester and pecticides , on Iraqi Clay (bentonite) by comparing the theoretical results w
... Show MoreAnaerobic digestion (AD) is the most common process for dealing with primary and secondary wastewater sludge. In the present work, four pre-treatment methods (ultrasonic, chemical, thermal, and thermo-chemical) are investigated in Al-Rustumya Wastewater Treatment plant in order to find their effect on biogas production and volatile solid removal efficiency during anaerobic digestion.
Two frequencies of ultrasonic wave were used 30 KHz and 50 KHz during the pre-treatment. Sodium hydroxide was added in different amounts to give three pH values of 9, 10 and 11 in chemical pre-treating processes. The sludge was heated at 60oC and 80oC through thermal pre-treatment experiment. Also, the sludge was treated thermo-chemically at 80 oC and pH
The objective of this investigation was to study the effects of a mixture of three arbuscular mycorrhizae (Glomus etunicatum, G. leptotichum and Rhizophagus intraradices) on the development of fusarium wilt disease in tomato plants in the presence and absence of organic matter (peatmoss). Results indicated an increase in mycorrhizal root dry weight especially in the presence of the organic matter, on the other hand this parameter was significantly decreased when Fusarium oxysporum f. sp. Lycopersiciwas added simultaneously with the mycorrhiza, Moreover, mycorrhiza and organic matter significantly reduced the damping off seedling disease, disease severity and rate of infection of tomato leaves and roots caused by the pathogenic fungus, These
... Show MoreA new Schiff base complex was prepeard and characterized: Chloro –Oxo (bis(Ohydroxy benzaldehyde) O-phenylene di imination ) Vanadium (V) with general formula (VOLCL). Complex was studied by using Three different organics Organic The photo chemistry of this solvent with different polarity . These solvents were ( Acetone,pyridinest chloro form) . It was found that the chelate Vanadium (V) complex decomposed photochemically in these solvents during . In the tra oxidation –reduction reaction leading to free radical derived in the ligand of shiff base ℓ .Vanadium IV chelate complex . It was also found that the quantum yield of photo decomposition (фd) and Activity ratio did not de
... Show MoreBackground: To investigate the effect of different types of storage media on enamel surface microstructure of avulsed teeth by using atomic force microscope.Materials and methods : Twelve teeth blocks from freshly extracted premolars for orthodontic treatment were selected . The study samples were divided into three groups according to type of storage media :A-egg white , B- probiotic yogurt , and C-bovine milk . All the samples were examined for changes in surface roughness and surface granularity distribution using atomic force microscope, at two periods: baseline, and after 8 hours of immersing in the three types of storage media. Results: Milk group had showed a significant increase in the mean of the roughness values at
... Show MoreCarbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.