Hypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid concentration thresholds above which storage efficiency may get influenced significantly. Findings These thresholds (defined for structural trapping as a water contact angle θ > 90°; and for capillary trapping when primary drainage is unaffected, i.e. θ > 50°) were very low for structural trapping (∼10−3–10−7 M organic acid concentration Corganic) and extremely low for capillary trapping (10−7 M to below 10−10 M Corganic). Since minute organic acid concentrations are always present in deep saline aquifers and certainly in depleted hydrocarbon reservoirs, significantly lower storage capacities and containment security than previously thought can be predicted in carbonate reservoirs, and reservoir-scale models and evaluation schemes need to account for these effects to de-risk CGS projects.
Mycotoxins are secondary by-products of mold metabolism and are accountable for human and animal mycotoxicosis. The most serious trichothecenic mycotoxin is the fungal T-2 mycotoxin. T-2 mycotoxin impaired nutrient absorption, metabolism, and then, eliciting severe oxidoreductive stress. Diet plays a key role beyond the supply of nutrients in order to promote animal and human health. Organic acids have been commonly used to exert antioxidative stress capacity in the liver and gut ecosystem. This study is planned to explore, the competence of using (X-MoldCid®) during chronic T-2 mycotoxicosis course in rat. Rats were allocated into 4 main groups, (CN-Gr), negative control and was allowed for the free access to the normal rats chow and the
... Show MoreChlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via mo
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreHigh-power density supercapacitors and high-energy–density batteries have gotten a lot of interest since they are critical for the power supply of future electric cars, portable electronic gadgets, unmanned aircraft, and so on. The electrode materials used in supercapacitors and batteries have a significant impact on the practical energy and power density. Metal–organic frameworks (MOFs) have the outstanding electrochemical ability because of their ultrahigh porous structure, ease of functionalization, and great specific surface area. These features make it an intriguing electrode material with good electrochemical efficiency for high-storage batteries. Thus, this review summarizes current developments in MOFs-based materials as an elec
... Show MoreA low-cost, RGB LED-based visible-light spectrophotometer was designed to measure dyes concentration. Dyes are widely used as indicators or coloring agents in different applications and knowing their concentration is an essential part for many studies. The proposed spectrophotometer provides many functionalities that clones the traditional expensive spectrophotometers for a budged price under $50. It was aimed to provide a versatile tool for instructors and educators to teach their students the fundamental concepts behind spectrophotometry. Malachite green, methyl red, and methyl orange dyes were chosen to be good samples to show the integrity of the proposed spectrophotometer in terms of accuracy, repeatability, and sensitivity as
... Show MoreA simple, rapid and environmentally friendly dispersive liquid–liquid microextraction method-based spectrophotometric method for the trace determination of folic acid has been developed. The proposed method is based on the formation of a deep yellow product via reaction of folic acid and 1,2-naphthoquine-4-sulfonate at pH = 9. The formed complex was extracted using a mixture of chloroform and ethanol. Then, the tiny organic droplets were measured at λ = 520 nm. At the optimum conditions, linearity was ranged from 0.05 to 1.5 μg/mL for the standard and samples, with a linear correlation coefficient of 0.9996. The detection limits were 0.02, 0.027, 0.03, 0.02 and 0.04 μg/mL for standard, tablet (5 mg), tablet (1 mg), syrup and fl
... Show MoreNanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show MoreFree radical formation in heme proteins is recognized as a factor in mediating the toxicity of many chemicals. The present study was designed to evaluate the dose-response relationship of the free radical scavenging properties of pentoxifylline in nitrite-induced Hb oxidation. Different concentrations of pentoxifylline were added at different time intervals of Hb oxidation in erythrocytes lysate, and formation of methemoglobin (MetHb) was monitored spectrophotometrically. The results showed that in this model, pentoxifylline successfully attenuates Hb oxidation after challenge with sodium nitrite; this protective effect was found to be not related to the catalytic stage of Hb oxidation, th
... Show MoreThis study investigates the influence of asymmetric involute teeth profiles for helical gears on the bending stress. Theoretically, bending stress has been estimated in spur involute gears which have symmetric teeth profile by based on the Lewis, 1892 equation. Later, this equation is developed by, Abdullah, 2012. to determine the effect of an asymmetric tooth profile for the spur gear on the bending stress. And then these equations are applied with stress concentration factor once for symmetric and once other for asymmetric teeth profile. In this paper, the bending stresses for various types of helical gear with various types of asymmetric teeth profile are calculated numerically for defined the stress concentration fac
... Show MoreIn the present study twenty samples of human urine were taken
from healthy male and female with different of: ages, occupation and
place of residence. These samples were collected from the hospital to
measure the concentration of radon gas in human urine by using one
of solid state nuclear track detectors LR-115.
The results obtained of the concentrations of radon in healthy human
urine are varying from 2.12×10-3 Bq.l-1 to 4.42×10-3 Bq.l-1 and
these values are less than the allowed limits 12.3×10-3 Bq.l-1.