The aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were monitored in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation describes the flexural strength as a function of indirect (surface) pulse velocity. The application of these equations may be extended to cover the assessment of flexural strength of constructed concrete kerb units or in-situ concreting kerb-stone and any other precast concrete units. Finally, a relation between direct and indirect pulse velocities of the a given concrete was predicted and suggested to be employed in case when one of the velocities is not available can be measured for other ultrasonic pulse test applications.
In oil and gas well cementing, a strong cement sheath is wanted to insure long-term safety of the wells. Successful completion of cementing job has become more complex, as drilling is being done in highly deviated and high pressure-high temperature wells. Use of nano materials in enhanced oil recovery, drilling fluid, oil well cementing and other applications is being investigated. This study is an attempt to investigate the effect of nano materials on oil well cement properties. Two types of nano materials were investigated, which are Nano silica (>40 nm) and Nano Alumina (80 nm) and high sulfate-resistant glass G cement is used. The investigated properties of oil well cement included compressive strength, thickening
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show MoreIn this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with
... Show MoreA long-span Prestressed Concrete Hunched Beam with Multi-Quadrilateral Opening has been developed as an alternative to steel structural elements. An experimental program was created and evaluated utilizing a single mid-span monotonic static load on simply supported beams, which included six beams with openings and the solid control beam without openings, to investigate the performance of such beams. The number and height of the quadrilateral openings are the variables to consider. According to test results, the presence of openings in the prestressed concrete hunched beam with multi-quadrilateral opening did not considerably affect their ultimate load capacity with respect to a contro
An experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum
... Show More