In this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution hosting nanoparticles without coatings on the cell. For Rhodamine B and Coumarin 102 samples, the fluorescence intensity of coated-cell sample was increased by 230, and 351%, respectively, with respect to that of dye only and by 152 and 141%, respectively, with respect to that of uncoated cells. The full-width at half-maximum (FWHM) was determined for both cases and found to be 8 and 9 nm, respectively.
Incident laser power and concentration effects on fluorescence emission from DCM dye in PMMA polymer have been investigated. Different concentrations of the dye were used. It was found that the fluorescence intensity increased with increasing of the concentration of the dye, with a red shift. In addition, it was found that the fluorescence intensity increased with the increase of the incident laser power I0.
Coated sand (CS) filter media was investigated to remove phenol and 4-nitrophenol from aqueous solutions in batch experiments. Local sand was subjected to surface modification as impregnated with iron. The influence of process variables represented by solution pH value, contact time, initial concentration and adsorbent dosage on removal efficiency of phenol and 4-nitrophenol onto CS was studied. Batch studies were performed to evaluate the adsorption process, and it was found that the Langmuir isotherm effectively fits the experimental data for the adsorbates better than the Freundlich model with the CS highest adsorption capacity of 0.45 mg/g for 4-nitrophenol and 0.25 mg/g for phenol. The CS was found to adsorb 85% of 4-nitrophenol and
... Show MoreThe study aimed to recommend a new spectrophotometric-kinetic method for determination of carbamazepine (CABZ) in its pure form and pharmaceutical forms. The proposed procedure based on the coupling of CABZ with diazotized sulfanilic acid in basic medium to yield a colored azo dye. Factors affecting the reaction yield were studied and the conditions were optimized. The colored product was followed spectrophotometrically via monitoring its absorbance at 396 nm. Under the optimized conditions, two method (the initial rate and fixed time (10 minute)) were applied for constructing the calibration graphs. The graphs were linear in concentration ranges 2.0 to 18.0 µg.mL-1 for both methods. The proposed was applied successfully in
... Show MoreThe present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS),respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showed that the adsorption of basic dye followed Freundlich iso
... Show MoreThe present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS), respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showe
In this paper we study the effect of adding Zinc Oxide powder (ZnO) at different ratios (10%,20%,30%,40%,50%) as particles and organic dyes rhodamine B(RhB), rohdamine 6G(Rh6G) and eosin(EO) are added at different doping ratios to polystyrene (PS), to form photosensitized(PS/ZnO/dye) composites, for samples were prepared as films by spin method. Photoconductive properties are investigated. For I-V characteristic measurements, the photocurrent (Iph) and dark current (Id) are generally increased in non linear behavior with increasing light intensity and applied voltage for all composites. The photocurrent goes decrease through its maximum value at high white light intensities or high voltage for 2.4*10-
... Show MoreBackground: This study report the corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy samples without coating and with hydroxyapatite, partial stabilized zirconia and mixture of partial stabilized zirconia and hydroxyapatite coating and comparison between them through electrochemical polarization tests in 37 0 C Hank's solution. Materials and methods: Electrophoretic deposition technique (EPD) was used to achieve the coating from each one of three types of the coating materials (HAP, PSZ and mixture of 50% HAP and 50%PSZ) on Cp Ti and Ti-6Al-4V alloy samples. The electrochemical corrosion test was performed when samples were exposed to Hank's solution prepared in the laboratory and the polarization potential, corrosion rate
... Show MoreNanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show More