In this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution hosting nanoparticles without coatings on the cell. For Rhodamine B and Coumarin 102 samples, the fluorescence intensity of coated-cell sample was increased by 230, and 351%, respectively, with respect to that of dye only and by 152 and 141%, respectively, with respect to that of uncoated cells. The full-width at half-maximum (FWHM) was determined for both cases and found to be 8 and 9 nm, respectively.
This study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreBackground: The adenomatoid odontogenic tumor is a relatively rare benign epithelial odontogenic tumor. It contains both epithelial and mesenchymal components. Few cases presented as an extrafollicular lesion or involve the mandible or associated with other odontogenic lesions. This paper represents a rare case of an extrafollicular AOT. Case presentation: A 24-year-old female had a painless swelling on the right side of the lower jaw since one-month duration. Intraorally there was a well defined fluctuant-blue swelling in the right alveolar premolar region measuring 1×2 cm obliterating the right lower buccal vestibule. Grade II mobility in the vital 44 and 45 teeth were observed. Panoramic radiographs showed a well-defined pear shaped
... Show MoreIt is estimated that over the next few decades, EOR will be used for the more than 50% of oil production in the US and worldwide. From these, in reservoir with viscositites ranging between 10 – 150 mPa.s, polymer flooding is suggsted as the EOR method. Therefore, there is an upper limit to the recommended range of reservoir oil viscosities for polymer flooding. To address the issue of this limitation of polymer injectivity and pumping efficiency, we propose a novel method. The method involves the use of Supramolecular Systems, which are composed of long-chain aminoacids and maleic acids post complexation. Their unique feature of resersible viscosities allows the operator to overcome
Polymethylmethacrylate film (PMMA) of thickness 75 μm was evaluated Spectrophotometrically for using it as a low-doses gamma radiation dosimeter. The doses were examined in the range 0.1 mrad-10 krad. Within an absorption band of 200-400 nm, the irradiated films showed an increase in the absorption intensity with increasing the absorbed doses. Calibration curves for the changes in the absorption differences were obtained at 218, 301, and 343 nm. At 218 nm the response for the absorbed doses is a linear in the range 10 mrad- 10 krad. Hence it is recommended to be adopted as an environmental low doses dosimeter