In this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution hosting nanoparticles without coatings on the cell. For Rhodamine B and Coumarin 102 samples, the fluorescence intensity of coated-cell sample was increased by 230, and 351%, respectively, with respect to that of dye only and by 152 and 141%, respectively, with respect to that of uncoated cells. The full-width at half-maximum (FWHM) was determined for both cases and found to be 8 and 9 nm, respectively.
Potential health and environmental effects of nanoparticles need to be thoroughly assessed before their widespread commercialization. The present investigation was planned with the aims to determine the effects of gold nanoparticles (GNPs) on blast (BI) and mitotic (MI) indices of cultured lymphocytes. The results revealed that BI (50.3±2.3, 30.2±1.9, 10.5±0.7 and 0.0%, respectively) and MI (70.1±2.9, 20.4±1.1, 5.3±0.1 and 0.0%, respectively) showed a gradual decreased percentage as the concentration of GNPs was increased from 0.085 to 0.66 µg/mL, and the difference was significant compared to control culture (81.6±2.5 and 90.2±3.7%, respectively). A maximum inhibition of BI and MI was occurred at the concentration 0.66 µg/mL. In
... Show MorePolyaniline (PANI) has been prepared by the oxidation method in order to fabricate it with various concentrations of copper nanoparticles (CuNPs) which produced using the reduction method. Various techniques have characterized pure PANI and PANI doped CuNPs composites, such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), which were provided important information about the structure and morphology of the fabricated polymer nanocomposites. The properties of dielectric permittivity (έ), dielectric loss (ἔ) and electrical conductivity (σ_AC) properties were studied at room temperature versus a range
... Show MoreWell-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
Liquid – liquid interface reaction is one of the method to prepare nanoparticles, the preparation of nanoparticles depends on the super saturation of ions which can satisfy by layered two immiscible liquid (toluene and deionized (DI) water). The XRD-diffraction analysis give a mix structure from hexagonal and cubic and the average grain size is 7.73 nm using Sherrer relation and 9.54 nm using Williamson –Hall method. Transmission electron microscopy (TEM) Showed that the size of particles around 3 nm which is comparable with Bohr radius of CdS.
From UV-Visible spectrum analysis which use two model to estimate the radius of particles , the first one is effective mass approximate (EMA) model and the second one is tight binding model
Background: Nanoparticles are clusters of atoms in a size range from (1-100) nm. Nano dentistry creates amazing useful structures from individual atoms or molecules (nanoparticles), which provides a new alternative and a possibly superior strategy in prevention and treatment of dental caries through management of dental plaque biofilms. The aim of the study was to test the sensitivity of Streptococcus mutans to different concentrations of hydroxyapatite and iron oxide nanoparticles suspension solutions, in comparison to chlorhexidine, and de-ionized water, in vitro. Materials and methods: Agar well technique was applied to test the sensitivity of Streptococcus mutans to different concentrations of hydroxyapatite and iron oxide nanoparticle
... Show MoreCadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated det
Statement of the Problem. The use of orthodontic fixed appliances may adversely affect oral health leading to demineralizing lesions and the development of gingival problems. Aims of the Study. The study aimed to coat orthodontic archwires with chlorhexidine hexametaphosphate nanoparticles (CHX-HMP NPs) and to evaluate the elusion of CHX from CHX-HMP NPs. Materials and Methods. A solution of CHX-HMP nanoparticles with an overall concentration of 5 mM for both CHX and HMP was prepared, characterized (using atomic force microscope and Fourier transformation infrared spectroscopy), and used to coat orthodontic stainless steel (SSW) and NiTi archwires (NiTiW). The coated segments were characterized (using scanning electron microscopy
... Show MoreThe present study aimed to synthesize selenium nanoparticles (SeNPs) using aqueous extract of black currant as a reducing agent. The green synthesized black currant selenium nanoparticles (BCSeNPs) were identified by color change. The characterization of SeNPs was achieved by Ultraviolet-visible (UV–VIS) spectroscopy, scanning electron microscopy (SEM), X–ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). These tests were used to detect: stability, morphology, size, crystalline nature, and functional groups present on the surface of BCSeNPs. The results revealed appearance of the brick-red color indicating the specific color of selenium nanoparticles, and UV-Vis spectroscopy showed band absorbanc
... Show MoreIn this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show More