In this study, the potential of adsorption of amoxicillin antibiotic (AMOX) from aqueous solutions using prepared activated carbon (AC) was studied. The used AC was prepared from an inexpensive and available precursor (sunflower seed hulls (SSH)) and activated by potassium hydroxide (KOH). The prepared AC was examined for its ability to remove AMOX from aqueous contaminated solutions and characterized with the aid of N2 -adsorption/desorption isotherm Brunauer–Emmett– Teller, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier-transform infrared. Zeta potential of the prepared activated carbon from sunflower seed hulls (SSHAC) were studied in relation to AMOX adsorption. The physical and chemical properties of SSHAC were analyzed and it showed successful preparation of SSHAC with a preferable surface area, micropores volume and average pore diameter of 928.706 m2 /g, 0.565 cm3 /g and 2.55 nm, respectively due to the hierarchical porosity of the prepared adsorbent. SSHAC exhibited a removal percentage of 95% for AMOX at a solution pH of 6, SSHAC dosage of 0.75 g/L and an initial AMOX amount of 50 mg/L. Equilibrium analysis were performed in a batch model within the range of 5–9 solution pH, 0.25–1.25 mg/mL SSHAC dosage and 50–250 mg/L AMOX initial concentration. The experimental data obtained were analyzed by Langmuir, Freundlich and Temkin isotherm models. The equilibrium data fitted well with the Langmuir model with a maximum AMOX adsorption capacity of 272.44 mg/g. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were utilized to examine the kinetic data obtained at various inlet AMOX concentrations. The kinetic experimental data were well fitted with the pseudo-first-order equation. A proposed adsorption mechanism by π–π interactions were introduced. From the obtained results, SSHAC is recommended as a highly efficient adsorbent for removal of AMOX from aqueous solutions
Quadrupole Q moments and effective charges are calculated for 9C, 11C, 17C and 19C exotic nuclei using shell model calculations. Excitations out of major shell space are taken into account through a microscopic theory which are called core-polarization effects. The simple harmonic oscillator potential is used to generate the single particle matrix elements of 9,11,17,19C. The present calculations with core-polarization effects reproduced the experimental and theoretical data very well.
Female infection with HPV (human papilla virus) has been established as an essential cause of CIN (cervical intraepithelial neoplasia). The danger of transformation from CIN to frank malignancy should be considered. Objective: The goal of this study is to evaluate the effectiveness of CO2 laser vaporization of ectocervical lesion high grade squamous intraepithelial lesion (HGSIL). Patients and Methods: Four Female out of 150 affected with HGSIL lesions were submitted to CO2 laser vaporization and followed up in 4 months later, and 10 women with HGSIL lesion submitted to electrocautery diathermy for the comparison. Results: Among women treated by CO2 laser vaporization, 3 women had negative results (clear cervix), at 4 months follow up; o
... Show MoreThis work is devoted to study the properties of the ground states such as the root-mean square ( ) proton, charge, neutron and matter radii, nuclear density distributions and elastic electron scattering charge form factors for Carbon Isotopes (9C, 12C, 13C, 15C, 16C, 17C, 19C and 22C). The calculations are based on two approaches; the first is by applying the transformed harmonic-oscillator (THO) wavefunctions in local scale transformation (LST) to all nuclear subshells for only 9C, 12C, 13C and 22C. In the second approach, the 9C, 15C, 16C, 17C and 19C isotopes are studied by dividing the whole nuclear system into two parts; the first is the compact core part and the second is the halo part. The core and halo parts are studied using the
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreFiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and
This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreIn this study, a new type of circulating three-phase fluidized bed reactor was conducted by adding a spiral path and was named as spiral three-phase fluidized bed reactor (TPFB-S) to investigate the possibility for removing engine oil (virgin and waste form) from synthetic wastewater by using Ricinus communis (RC) leaves natural and activated by KOH. The biosorption process was conducted by changing particle diameter in the range 150–300 and 300–600 µm, liquid flow rate in the range 2.5–4.5 L/min and gas flow rate in range of 0–1 L/min, while other parameters initial oil emulsion concentration, pH, adsorbent concentration, agitation speed and contact time were kept constant at 2000 mg/L, 2,
ABSTRACT The isolation and characterization of (27) isolate of extreme halophilic bacteria was performed ninteen isolate belonged to the genus Halobacterium which included Hb.halobium. Hb. salinarium, Hb. volcanii. Growth curve and generation time in logarthmic phase was measured and found to be (12.8hr±0.32), (11.2hr±0.2), (9.8hr±0.87), respectivaly. Effect of various concentrations of NaCl, KCI, NH4Cl and MgSO4.7H2O was studied, NaCl was essential for the rod shape rapid growth Rat and pigmentation. Less than 1% concentration caused lysis of bacteria. Yeast extract was the best carbone source as compared with glucose and casamino acid.