The ability of microorganisms to attach to living and non-living surfaces and create a biofilm is the cause of numerous long-lasting illnesses, as well as their strong resistance to drugs. Bacterial biofilms consist of intricate assemblies of immobile bacteria. These are located in an extracellular matrix and adhere to various surfaces for a long period. The present study evaluated the antibacterial effectiveness of Plantago major extract against Staphylococcus aureus biofilm. The specimens analyzed in this investigation were skin infections of clinical origin. The current study was not previously studied, particularly in terms of S. aureus biofilm breakdown and inhibition. The disc diffusion method was used to test the antimicrobial activity of extracts on planktonic forms. Several antibiotic control tests were conducted utilizing several commercial disks, The sizes of the inhibitory zones were measured in millimeters and normalized. The anti-biofilm effects were evaluated using the microtiter plate technique. Out of 120 clinical samples, only 46 (38.3 %) had positive S. aureus isolates, whereas 74 (61.6%) were negative. The current study demonstrated that ethanolic P. major leaf extract has antibacterial effects on the development of S. aureus isolates with zones of inhibition ranging in size from 9 to 22 mm. Simultaneously, Antibiotic susceptibility tests showed that all isolates were resistant to erythromycin and clindamycin at an 80 % level. Cefoxitin and chloramphenicol resistance was found at 72 %, and 77 %, respectively. significance and impact of study: this research shown that Extracts from Plantago major can be employed as antibacterial agents against S. aureus, and also anti_staphyloccocus biofilm forms.
Newly series of 6,6’-((2-(Aryl)dihydropyrimidine-1,3(2H,4H)-diyl)bis(methylene))bis(2-methoxy phenol) (3a-i) were synthesized from cyclization of 6,6’-((propane-1,3-diylbis (azanediyl)) bis(methylene)) bis(2-methoxyphenol) with several aryl aldehyde in the presence of acetic acid. The newly compounds characterized from their IR, NMR and EIMs spectra. The antioxidant capacity of these compounds screened by utilizing DPPH and FRAP assays. Compounds 3g and 3i exhibited significant antioxidant capability in both assays. Docking study for these compounds as a potential inhibitors of gyrase enzyme were carried out. Compound 3g exhibited significant inhibition with binding free energies (DG) higher than novobiocin. compounds 2, 3a, 3b, 3
... Show MoreBackground: Irrigation has a central role in endodontic treatment. Several irrigating solutions have the antimicrobial activity and actively kill bacteria and yeasts when introduced in direct contact with the microorganisms. The purpose of this study was to evaluate the antimicrobial effectiveness of Dandelion (Taraxacum officinale) root and leaf extracts as possible irrigant solutions, used during endodontic treatments, and both were compared to Sodium hypochlorite, Propolis and Ethyl alcohol. Materials and Method: Forty seven human extracted single rooted teeth were selected. The teeth were decoronated using a diamond disk to have a length of 15 mm ±1 mm and they were instrumented using the hybrid technique. All roots were sterilized
... Show MoreBacterial infections pose an ongoing challenge due to resistance developed by infectious bacteria. So much research targeting designing new antibacterials is published annually. Our goal is to synthesize compounds that have given antibacterial activity according to molecular docking against the chosen target protein and that have acceptable ADMET properties that can be synthesized and used in the future. New 2-(5-methoxy-1-(4-chlorobenzene)-2-methyl-1H-indol-3-yl)acetohydrazide derivatives’ antibacterial efficacy against two common strains of Gram-negative and Gram-positive microorganisms has been developed, produced, and investigated. Sophisticated, modern analytical methods, including ATR-FTIR and 1H NMR spectroscopy, were used
... Show MoreLactobacillus is one of Lactic Acid Bacteria group, they are known to exhibit antagonistic activity against pathogenic organisms. This study evaluates the protective effect of Lactobacillus acidophilus Crud Bacteriocin like substance against growth of some food borne pathogenic bacteria. Antimicrobial effect of crud bacteriocin like substance was tested against the growth of S. typhi and S. aureus that isolated from food samples by agar well diffusion assay.
The results showed that the crud extract of bacteriocin like substance had antibacterial activity against the two tested bacteria, and the effect against S. typhi was greater than that of S. aureus , the zone of inhibition was (15)mm against S.&n
In addition to the primary treatment, biological treatment is used to reduce inorganic and organic components in the wastewater. The separation of biomass from treated wastewater is usually important to meet the effluent disposal requirements, so the MBBR system has been one of the most important modern technologies that use plastic tankers to transport biomass with wastewater, which works in pure biofilm, at low concentrations of suspended solids. However, biological treatment has been developed using the active sludge mixing process with MBBR. Turbo4bio was established as a sustainable and cost-effective solution for wastewater treatment plants in the early 1990s and ran on minimal sludge, and is easy to maintain. This
... Show MoreThe phytoremediation technique has become very efficient for treating soil contaminated with heavy metals. In this study, a pot experiment was conducted where the Dodonaea plant (known as hops) was grown, and soil previously contaminated with metals (Zn, Ni, Cd) was added at concentrations 100, 50, 0 mg·kg-1 for Ni and Zn, and at concentrations of 0, 5, 10 mg·kg-1 for cadmium. Irrigation was done within the limits of the field capacity of the soil. Cadmium, nickel and zinc was estimated in the soil to find out the capacity of plants to the absorption of heavy and contaminated metals by using bioconcentration factors (BCFs), bioaccumulation coefficient (BAC) and translocation factor (TF). Additionally, BCF values of both Ni and Zn were l
... Show MoreAqueous and ethanolic extracts of different parts (seeds, leaves, bark) of neem plant (Azadirachta Indica) were screened for antibacterial activaties against five species of bacteria (Staphylococcus aurous, Staphylococcus epidermises, Acinetobacter baumanni, Psedommonas aeruginosa, and Escherishia coli). Different extracts 40-80 mg/L were tested using Ager-well diffusion method. Neem parts potent demonstrated for anti-bacterial activaties against all microorganisms tested. The results showed that neem seeds aqueous and ethanolic, extract have significant effects for all tested bacteria, the maximum inhibition zone by seeds cold aqueous and cold ethanolic extracts were 22 & 13 mm for E. coli and S. epidermidis respectively; while leav
... Show MoreCurrent studies interested on the biosynthesis of zinc oxide nanoparticles (ZnO-NPs) using hot plants extracts of Allium sativum and characterization of them using: Atomic Force Microscopy (AFM), X-ray diffractions (XRD), Fourier Transform Infrared Spectroscopy (FT- IR), UV–visible spectral and Hot stage. The results found that all NPs are had nano-size. ZnO NPs was produced by four procedures using hot extract of Allium sativum. The average diameters were: 101.59 nm, 110.33 nm, 75.69 nm, 88.67 nm for first, second, third and fourth procedures respectively compared with 47.57 nm for standard NPs. The Roughness averages (Ra) were: 10.8 nm, 6.83 nm, 13.8 nm, 0.541 nm for first, second, third and fourth respectively. The Root mean square (Sq
... Show MoreCopper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show More