Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables are vertical depth, bulk density, and acoustic compressional wave velocity, with the activation function of tangent sigmoid. The average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient (R2) were applied for evaluation. The results revealed that the best artificial neural network structure was (3-8-1), with average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient R2 of -0.52, 1.01, 3994, 63.2, and 0.995, respectively. A C++ computer program is provided with a calculation sample to simplify the implementation of the proposed artificial neural network. The dependency degree of pore pressure on each input parameter is investigated, revealing the highest impact of depth on pore pressure prediction. Furthermore, to check the validity of the artificial neural network against the different datasets, the artificial neural network performance was compared with 84 new data points and showed an advantage over the existing models. The very good performance of artificial neural network for different types of oil reservoirs and formations reveals an insignificant effect of lithology on the prediction of pore pressure.
In the present study, radon gas concentration in the shallow groundwater samples of the Abu-Jir region in Anbar governorate was measured by using Rad-7 detector. The highest radon gas level in the samples is up to 9.3 Bq/L, while the lowest level is 2.1 Bq/L, with an average of 6.44±1.8 Bq/L. The annual effective dose is varied from 33.945 μSv/y to 7.66 μSv/y, with an average of 0.145±0.06 μSv/y. Consequently, the radon level in the groundwater studied is lower than the standard recommended value (11 Bq/L) reported by the United States Environmental Protection Agency (USEPA). The potential source of radon is uranium-rich hydrocarbons that are leakage to the surface along the Abu-Jir Fault. This research did not indicate any ris
... Show MoreAir pollution evaluation of the operational processes in the East Baghdad oil field was carried out. The analysis was carried out by ICP-MS technique. Total Suspended Particles (TSP) air load was higher than Iraqi Standards and world international allowable limits of World Health Organization. The mean concentrations of gases carbon monoxide, carbon dioxide, sulfur dioxide, in the air were within national and world standards, while the mean concentration of nitrogen dioxide was higher than standard limits. The air of the study area is considered a good quality for CO, CO2 and NO2 with no health effect, while it is hazardous for TSP that have serious risk for people with respiratory disease. The mean concentrations of Cd, Cr, Cu and
... Show MoreThis study is achieved in the local area in Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group a carbonate succession and widespread throughout the Arabian Plate. There are four association facies are identified in Mishrif Formation according the microfacies analysis: FA1-Deep shelf facies association (Outer Ramp); FA2-Slope (Middle Ramp); FA3-Reef facies (Shoal) association (Inner ramp); FA4-Back Reef facies association. Sequence stratigraphic analysis show there are three stratigraphic surfaces based on the abrupt changing in depositional
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreApplications of remote sensing are important in improving potato production through the broader adoption of precision agriculture. This technology could be useful in decreasing the potential contamination of soil and water due to the over-fertilization of agriculture crops. The objective of this study was to assess the utility of active sensors (Crop Circle™, Holland Scientific, Inc., Lincoln, NE, USA and GreenSeeker™, Trimble Navigation Limited, Sunnyvale, CA, USA) and passive sensors (multispectral imaging with Unmanned Arial Vehicles (UAVs)) to predict total potato yield and phosphorus (P) uptake. The experimental design was a randomized complete block with four replications and six P treatments, ranging from 0 to 280 kg P ha−1, as
... Show MoreBackground: Dyslipidemia is defined as an abnormally high level of various lipids in the blood. It is considered a major risk for atherosclerosis and coronary artery disease. Genetic susceptibility can have a significant influence on the development and progression of dyslipidemia. ApoB-100 R3500Q mutation and ApoE variants are among those genetic risks for dyslipidemia. This study aims to assess the possible contribution of ApoB and ApoE variants on lipid profile among a group of early-onset ischemic heart disease (IHD) patients in comparison to a group of controls. Methods: Forty patients with dyslipidemia and early-onset IHD without chronic conditions likely to cause derangement of lipid levels were recruited to this case-control study
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreHygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is a basic pri
... Show More