Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables are vertical depth, bulk density, and acoustic compressional wave velocity, with the activation function of tangent sigmoid. The average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient (R2) were applied for evaluation. The results revealed that the best artificial neural network structure was (3-8-1), with average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient R2 of -0.52, 1.01, 3994, 63.2, and 0.995, respectively. A C++ computer program is provided with a calculation sample to simplify the implementation of the proposed artificial neural network. The dependency degree of pore pressure on each input parameter is investigated, revealing the highest impact of depth on pore pressure prediction. Furthermore, to check the validity of the artificial neural network against the different datasets, the artificial neural network performance was compared with 84 new data points and showed an advantage over the existing models. The very good performance of artificial neural network for different types of oil reservoirs and formations reveals an insignificant effect of lithology on the prediction of pore pressure.
In petroleum reservoir engineering, history matching refers to the calibration process in which a reservoir simulation model is validated through matching simulation outputs with the measurement of observed data. A traditional history matching technique is performed manually by engineering in which the most uncertain observed parameters are changed until a satisfactory match is obtained between the generated model and historical information. This study focuses on step by step and trial and error history matching of the Mishrif reservoir to constrain the appropriate simulated model. Up to 1 January 2021, Buzurgan Oilfield, which has eighty-five producers and sixteen injectors and has been under production for 45 years when it started
... Show MoreA Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated vi
... Show MoreCumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi | Volume: 48 Issue: 2
In this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
Phytoplankton assemblage in relation to physical and chemical characteristics of water in Al-Auda marsh of Maysan province southern Iraq was assessed from November 2012 to July 2013. Six sampling sites were chosen to examine all phytoplankton species in the study area. A total of 246 species and seventy-five genera have been recognized belonging to twelve phytoplankton classes as follows: Bacillariophyceae (106 taxa), Chlorophyceae (34 taxa), Euglenophyceae (29 taxa), Cyanophyceae (29 taxa), Conjugatophyceae (19 taxa), Mediophyceae (10 taxa), Cryptophyceas (5 taxa), Coscinodiscophyceae (4 taxa), Chrysophyceae (4 taxa), Dinophyceae (3 taxa), Trebouxiophyceae (2 taxa) whereas Compsopogonophyceae record
The hydrodynamics behavior of gas - solid fluidized beds is complex and it should be analyzed and understood due to its importance in the design and operating of the units. The effect of column inside diameter and static bed height on the minimum fluidization velocity, minimum bubbling velocity, fluidization index, minimum slugging velocity and slug index have been studied experimentally and theoretically for three cylindrical columns of 0.0762, 0.15 and 0.18 m inside diameters and 0.05, 0.07 and 0.09 m static bed heights .The experimental results showed that the minimum fluidization and bubbling velocities had a direct relation with column diameter and static bed height .The minimum slugging velocity had an
... Show More