Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables are vertical depth, bulk density, and acoustic compressional wave velocity, with the activation function of tangent sigmoid. The average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient (R2) were applied for evaluation. The results revealed that the best artificial neural network structure was (3-8-1), with average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient R2 of -0.52, 1.01, 3994, 63.2, and 0.995, respectively. A C++ computer program is provided with a calculation sample to simplify the implementation of the proposed artificial neural network. The dependency degree of pore pressure on each input parameter is investigated, revealing the highest impact of depth on pore pressure prediction. Furthermore, to check the validity of the artificial neural network against the different datasets, the artificial neural network performance was compared with 84 new data points and showed an advantage over the existing models. The very good performance of artificial neural network for different types of oil reservoirs and formations reveals an insignificant effect of lithology on the prediction of pore pressure.
Background: Joubert syndrome (JS) is a very rare autosomal recessive disorder characterized by agenesis of cerebellar vermis, abnormal eye movements, respiratory irregularities, and delayed generalized motor development. Retinal dystrophy and cystic kidneys may also be associated with this clinical syndrome. The importance of recognizing JS is related to the outcome and its potential complications. This syndrome is difficult to diagnose clinically because of its variable phenotype. Its neuroimaging hallmarks include the characteristic molar tooth sign and bat wing-shaped fourth ventricle
ناقش البحث في طياته عدداً من القضايا الرئيسة المتعلقة بالتقييم الاستراتيجي والإطار العام للخطة الاستراتيجية المقترحة لشركة نفط ميسان للسنوات الخمس المقبلة (2020_2024)، وهدف هذا البحث يتمحور في تقييم عملية صياغة استراتيجية شركة نفط ميسان لتحديد نقاط القوة وتعضيدها ومواطن الضعف ومحاولة معالجتها لتجنب الوقوع بها عند وضع استراتيجية للسنوات القادمة، وعلى هذا الاساس فان مشكلة البحث تكمن في مدى نجاح الاستراتي
... Show MoreBecause of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro
... Show MoreThe performance of H2S sensor based on poly methyl methacrylate (PMMA)-CdS nanocomposite fabricated by spray pyrolysis technique has been reported. XRD pattern diffraction peaks of nano CdS has been indexed to the hexagonally wurtzite structured The nanocomposite exhibits semiconducting behavior with optical energy gap of4.06eV.SEM morphology appears almost tubes like with CdS/PMMA network. That means the addition of CdS to polymer increases the roughness in the film and provides high surface to volume ratio, which helps gas molecule to adsorb on these tubes. The resistance of PMMA-CdS nanocomposite showed a considerable change when exposed to H2S gas. Fast response time to detect H2S gas was achieved by using PMMA-CdS thin film sensor. The
... Show Moredifferent ?? ? injury ? This study aims to knowing the affect of embargo on cancer tutors in Iraq according to different body systems , In addition, this '?0 kinds study aims at knowing t^e categories ages that can be mostly injured by the cancer Egression analysis and descriptive statistics( median and frequency tables). ^?^???? have been used to achieve these two aims .This study includes ah the seventy cancer s Iraq from 1980-1998 and the data have been from the Ministry of Health / ?? tumors Iraqicancer board administration / central registry. The results of this study are emale productive? : Embargo has affected the ten different body systems as .? central nervous system and opthamamology , Hematology ,Respiratory ? system system , mal
... Show MoreThe study included the determination of pollen grains features for 8 genera and 13 taxa of Mimosoideae subfamily grown in Baghdad/ Iraq by using each of light and scanning electron microscope. The samples of taxa were collected from various sites in Baghdad province in central Iraq located on 32 45° 0-33 45 0 N and 44 0 0- 44° 45 0 E. the results from this study revealed different pollen types as monad in each of Leucaena, Prosopis, and Neltuma, tetrad in Mimosa and polyads in Acacia, Albizia, Calliandra, Pithecellobium and Vachellia. Each taxa of these genera characterized by special palynological features as shape, size, number of polyads grain and conplateuration as well as other parameters included other dimensions, and these
... Show MoreThis study aims to study some morphological and reproductional characteristics in eleven species of two genera belonging to the family of Asparagaceae, which are Bellevalia Lapeyrouse, 1808 and Ornithogalum Linnaeus, 1753 and the species are: Bellevalia chrisii Yildirim and Sahin, 2014; Bellevalia flexuosa Boissier, 1854; Bellevalia kurdistanica Feinbrun, 1940; Bellevalia longipes Post, 1895; Bellevalia macrobotrys Boissier, 1853; Bellevalia paradoxa Boissier, 1882; Bellevalia parva Wendelbo, 1973; Bellevalia saviczii Woronow, 1927; Ornithogalum brachystachys C. Koch, 1849; Ornithogalum neurostegium Boissier, 1882 and Ornithogalum pyrenaicum Linnaeus, 1753. These species were identified and compared with each other; the results showed th
... Show More