Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is openly accessible. It evaluates the performance of a complete arrangement of machine learning algorithms and network traffic features to indicate the best features for detecting the assured attack classes. Our goal is storing the address of destination IP that is utilized to detect an intruder by method of misuse detection.
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
Background: The figure for the clinical application of computed tomography have been increased significantly in oral and maxillofacial field that supply the dentists with sufficient data enables them to play a main role in screening osteoporosis, therefore Hounsfield units of mandibular computed tomography view used as a main indicator to predict general skeleton osteoporosis and fracture risk factor. Material and Methods: Thirty subjects (7 males &23 females) with a mean age of (60.1) years underwent computed tomographic scanning for different diagnostic assessment in head and neck region. The mandibular bone quality of them were determined through Hounsfield units of CT scan images and were correlated with the bone mineral density v
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show Morein this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators
Aromatic hydrocarbons present in Iraqi national surface water were believed to be raised principally from combustion of various petroleum products, industrial processes and transport output and their precipitation on surface water.
Polycyclic aromatic hydrocarbons (PAHs) were included in the priority pollutant list due to their toxic and carcinogenic nature. The concern about water contamination and the consequent human exposure have encouraged the development of new methods for
PAHs detection and removal.
PAHs, the real contaminants of petroleum matter, were detected in selected sites along Tigris River within Baghdad City in summer and winter time, using Shimadzu high performance liquid chromatography (HPLC) system.
Analysi
This study was conducted to detect C.sakazakii PIF and raw milk. Two hundred samples of PIF were taken from the infected hospital infants who used this type of milk and from the local markets in addition to 16 sample of raw milk were collected. The study is the first to report the isolation of C. sakazakii and Enterobacter spp. from raw milk in Iraq. The distribution of C.sakazakii and Enterobacter spp. among the presumptive isolates using Vitek-GN2 system gave 1/16(6.25%) isolates of C.sakazakii and 4/16 (25%) isolates of Enterobacter spp. Enterobacter spp. isolates include (E.cloacae ssp. cloacae and E.cloacae ssp. dissolvens, E.hormaechei, and E.ludwigii) that isolate from raw milk Differences in between percentages of each isolate perse
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show More