The purpose of this article is to improve and minimize noise from the signal by studying wavelet transforms and showing how to use the most effective ones for processing and analysis. As both the Discrete Wavelet Transformation method was used, we will outline some transformation techniques along with the methodology for applying them to remove noise from the signal. Proceeds based on the threshold value and the threshold functions Lifting Transformation, Wavelet Transformation, and Packet Discrete Wavelet Transformation. Using AMSE, A comparison was made between them , and the best was selected. When the aforementioned techniques were applied to actual data that was represented by each of the prices, it became evident that the lifting transformation method (LIFTINGW) and the discrete transformation method with a soft threshold function and the Sure threshold value (SURESDW) were the best. Consumer prices will be the dependent variable for the period of 2015–2020, and Iraqi oil (Average price of a barrel of Iraqi oil) will serve as the explanatory variable. The methods described above have proven effective in estimating the nonparametric regression function for the study model. Paper type: Research paper.
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MoreIn this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
Bootstrap is one of an important re-sampling technique which has given the attention of researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con
... Show MoreIn this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method
The Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function,
... Show MoreSurvival analysis is the analysis of data that are in the form of times from the origin of time until the occurrence of the end event, and in medical research, the origin of time is the date of registration of the individual or the patient in a study such as clinical trials to compare two types of medicine or more if the endpoint It is the death of the patient or the disappearance of the individual. The data resulting from this process is called survival times. But if the end is not death, the resulting data is called time data until the event. That is, survival analysis is one of the statistical steps and procedures for analyzing data when the adopted variable is time to event and time. It could be d
... Show MoreIn this paper, the restricted least squares method is employed to estimate the parameters of the Cobb-Douglas production function and then analyze and interprete the results obtained. A practical application is performed on the state company for leather industries in Iraq for the period (1990-2010). The statistical program SPSS is used to perform the required calculations.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreIn the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression.
In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of t
... Show More