The purpose of this article is to improve and minimize noise from the signal by studying wavelet transforms and showing how to use the most effective ones for processing and analysis. As both the Discrete Wavelet Transformation method was used, we will outline some transformation techniques along with the methodology for applying them to remove noise from the signal. Proceeds based on the threshold value and the threshold functions Lifting Transformation, Wavelet Transformation, and Packet Discrete Wavelet Transformation. Using AMSE, A comparison was made between them , and the best was selected. When the aforementioned techniques were applied to actual data that was represented by each of the prices, it became evident that the lifting transformation method (LIFTINGW) and the discrete transformation method with a soft threshold function and the Sure threshold value (SURESDW) were the best. Consumer prices will be the dependent variable for the period of 2015–2020, and Iraqi oil (Average price of a barrel of Iraqi oil) will serve as the explanatory variable. The methods described above have proven effective in estimating the nonparametric regression function for the study model. Paper type: Research paper.
Through the early childhood and after the ablactating the child learns acquired food habbits that might studying with him throughout his life. Here the parents role arises: teaching the child the sound food habits and hygienic styles and whatever beneficial to the health and with the sufficient quantities for the body. In this way the experiences the child learns at home will be of great help in his future life in choosing the suitable food after becoming more dependent in making his decisions and choices away from his parents. The results in this study showed that the averages of the children’s consumption of the high energy foods in comparison with the other highest consumption average , after that comes the con sumption of soft drills
... Show MoreIn this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show MoreThe study aimed to introduce the effect of Giardia lamblia infection on changes in
some biochemical parameters in serum of infected patients before and after treatment during a
period of one year, (from Feb, 2008 to Jan, 2009).
Samples of 50 infected patients who referred to Al-Kadimiyah Teaching Hospital,
were collected before and after 7 days of treatment.
The activity of liver enzymes (Gpt and Got) before treatment increased significantly as
it reached up to (8.47) u/L and 19.06 u/L, comparing with control values (6.455) u/L and
(8.39) u/L respectively. The activity of the enzymes decreased after treatment but the values
of Gpt and Got remained higher than the control values as reached 7-27 u/L, 11-64 u/L
The multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreBackground: Imaging techniques play a very important role in the specialty of endodontic. The ultrasonographic technique is non-expensive procedure, safe, and reproducible. The aim of the study was to determine the sensitivity, specificity, and accuracy of ultrasound and color Doppler ultrasonography in evaluation of periapical lesions (cyst, granuloma, mixed lesion “cyst within graulomas mass”, and abscess. Subject, Material and method: The sample consists of prospective study for 64 Iraqi participants who attended Karbalaa Specialized Center for Dentistry (males & females). Those patients were diagnosed clinically and radiographically as having periapical lesions of dental origin. They were examined by real time ultrasound and color
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreThe method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search the comparison between binary lo
... Show More