Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that the highest opacity of the insulating phase is achieved at the ultraviolet region and it reduces for the metal phase. Besides, the results demonstrate that the opacity possesses a redshift during the changes at the three phases. Regarding the infrared region, the lowest opacity value is achieved at the insulator phase and it increases to the highest value at the metal phase. In the visible region, the opacity behavior remains similar in the three phases. It is worth noting that the lowest opacity is found for thinner nanofilm. Since both the refractive index and the extinction index are among the most essential optical constants, hence, both of them were compared with the experiment results, and an excellent agreement is achieved between them.
Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show MoreIn this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the ban
... Show MoreIndium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
The pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.
Nanostructure of chromium oxide (Cr2O3-NPs) with rhombohedral structure were successfully prepared by spray pyrolysis technique using Aqueous solution of Chromium (III) chloride CrCl3 as solution. The films were deposited on glass substrates heated to 450°C using X-ray diffraction (XRD) shows the nature of polycrystalline samples. The calculated lattice constant value for the grown Cr2O3 nanostructures is a = b = 4.959 Å & c = 13.594 Å and the average crystallize size (46.3-55.6) nm calculated from diffraction peaks, Spectral analysis revealed FTIR peak characteristic vibrations of Cr-O Extended and Two sharp peaks present at 630 and 578 cm-1 attributed to Cr-O “stretching
... Show MoreSchmidt Cassegrain spider obscuration telescope (SCT) is one of the types of observations operating with a concave mirror. It combines several lenses and mirrors working together as an optical system. The light rays fall into the tube from the main mirror and gather on another smaller mirror called a secondary mirror. Unlike the formation of Newton's telescope, no light is made from the secondary mirror out the side of the tube but is directed to the middle of the main mirror. There is an opening in the middle of the main mirror so the light beam can go out and direct the vision lens system. The secondary mirror is located in the middle of a glass slice and is installed by thin carriers. The function of this board is to correct the portr
... Show MoreFilms of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .