Preferred Language
Articles
/
oRdC-5ABVTCNdQwCgJHM
Optical properties of ZnS and PEDOT thin films

Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that the highest opacity of the insulating phase is achieved at the ultraviolet region and it reduces for the metal phase. Besides, the results demonstrate that the opacity possesses a redshift during the changes at the three phases. Regarding the infrared region, the lowest opacity value is achieved at the insulator phase and it increases to the highest value at the metal phase. In the visible region, the opacity behavior remains similar in the three phases. It is worth noting that the lowest opacity is found for thinner nanofilm. Since both the refractive index and the extinction index are among the most essential optical constants, hence, both of them were compared with the experiment results, and an excellent agreement is achieved between them.

Scopus
Publication Date
Sun Mar 01 2020
Journal Name
International Journal For Light And Electron Optics
Optical properties of Ag-doped nickel oxide thin films prepared by pulsed-laser deposition technique

In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.

Scopus (27)
Crossref (24)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Gamma radiation induced changes in the optical properties of CdTe thin films for dosimetric purposes

The effect of 0.662MeV gamma radiation on the optical properties of the CdTe thin films was studied. 300nm thickness of CdTe samples were irradiated with doses (10, 20, 30,60krad) in room temperature. The absorption spectra for all the samples were recorded using UV- Visible spectrometer in order to calculate the energy gap, width of localized states and optical constants(refractive index, extinction coefficient, real and imaginary parts of dielectric constant). The optical energy gap was found to decrease from (1.53 to 1.48 eV), while the width of localized states increased from (1.34 to 1.49 eV) with the increasing of radiation dose. The behavior of energy gap with the irradiation dose makes the material a good candidate for dosimetry

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Optical Properties of Aluminum Doped CdO Thin Films Prepared by Vacuum Thermal Evaporation Technique

   In this work, thin films of undoped and Al-doped CdO with (0.5, 1 and 2) wt.%  were prepared by using thermal vacuum evaporation on glass substrate at room  temperature. The optical absorption coefficient (α) of the films was determined from transmittance spectra in the range of wavelength (400-1100) nm. The spectral transmission and the optical energy band gap decrease from 75% and 2.24 eV to 20%  and 2.1 eV respectively depending upon the Al content in the films, also our studies include the calculation of  the optical constants (refractive index, extinction coefficient, real and imaginary part of dielectric constant) as a function of photon energy.  It is evaluated that the optical band gap of

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Journal Of Physics
The Structural and Optical Properties of Hydrogenated and Nitrogenated a-Si0.1Ge0.9 and a-Si0.1Ge0.9:3% B Thin Films

It is shown that pure and 3% boron doped a-Si0.1Ge0.9:H and a-Si0.1Ge0.9:N thin films
could be prepared by flash evaporation processes. The hydrogenation and nitrogenation
are very successful in situ after depositing the films. The FT-IR analysis gave all the
known absorbing bonds of hydrogen and nitrogen with Si and Ge.
Our data showed a considerable effect of annealing temperature on the structural and
optical properties of the prepared films. The optical energy gap (Eopt.) of a-Si0.1Ge0.9
samples showed to have significant increase with annealing temperature (Ta) also the
refractive index and the real part of dielectric constant increases with Ta, however the
extinction coefficient and imaginary part of dielect

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 12 2014
Journal Name
International Journal Of Current Engineering And Technology
The Effect of Sb Dopant and Annealing Temperature on the Structural and Optical Properties of GeSe Thin Films

The pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o. The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and real and

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 20 2014
Journal Name
International Journal Of Current Engineering And Technology
The Effect of Sb Dopant and Annealing Temperature on the Structural and Optical Properties of GeSe Thin Films

The pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r

... Show More
Publication Date
Wed May 29 2019
Journal Name
Indian Journal Of Physics
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Study of Annealing and Dopping Effect of Zn on Structural and Optical Properties for CdTe Thin Films

In this research thin films of (CdTe) have been prepared as pure and doped by Zn
with different ratios (1,2,3,4,5)% at thickness (400+25)nm with deposition rate (2±0.1)nm,
deposited on glass substrate at R.T. by using thermal evaporation in vacuum . All samples
were annealed at temperature (523,573,623,673)K at 1h.
The structural prop erties of all prepared thin films, doped and undoped have been
studied by using XRD. The analysis reveals that the structures of the films were
polycrystalline and typed cubic with a preferred orientation along (111) plane for the
undoped films with (2,3)% of zinc , and shifting (2ÆŸ) for doped films . The annealing films
at temperature 573 K and Zn:3% show decreasing in

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Effect of annealing and chemical treatment on structural and optical properties of CuPcTs/PEDOT:PSS (BHJ Blend) thin films

In this work, The effect of annealing treatment at different temperatures (373, 423 and 473) K and chemical treatment with talwen at different immersion time (40, 60 and 80) min on structural and optical properties of the bulk heterojunction (BHJ) blend copper phthalocyanine tetrasulfonic acid tetrasodium salt/poly dioxyethylenethienylene doped with polystyrenesulphonic acid (CuPcTs/PEDOT:PSS) thin films were investigated. The films were fabricated using spin coating technique. X-ray diffraction (XRD) measurements displayed only one peak at 2θ =4.5o corresponding to (001) direction which has dhkl larger than for standard CuPcTs. The dhkl increase then decrease with increasing annealing temperature and
the time of chemical treatment w

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Impact of PEDOT:PSS Concentration and Heat Treated on Compositional and Some Optical Properties for Graphene Oxide Thin Films

     In this study the as-deposited and heat treated at 423K of conductive blende graphene oxide (GO) / poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) thin films was prepared with different PEDOT:PSS concentration (0, 0.25, 0.5, 0.75 and 1.0)wt% on pre-cleaned glass substrate by spin coating technique. The energy dispersive X-ray Analysis (EDX) show the existence of higher amount of carbon and oxygen related to hydroxyl and carbonyl  groups. X-ray diffraction (XRD) analysis of the as-deposited and annealed GO/PEDOT:PSS thin films blend indicated that the film prepared  show broad peak around 8.24 corresponding to the (001) level refers to GO, this peak shifted to the lower 2θ with increasing PEDOT:PSS concentr

... Show More
Scopus Crossref
View Publication Preview PDF