Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that the highest opacity of the insulating phase is achieved at the ultraviolet region and it reduces for the metal phase. Besides, the results demonstrate that the opacity possesses a redshift during the changes at the three phases. Regarding the infrared region, the lowest opacity value is achieved at the insulator phase and it increases to the highest value at the metal phase. In the visible region, the opacity behavior remains similar in the three phases. It is worth noting that the lowest opacity is found for thinner nanofilm. Since both the refractive index and the extinction index are among the most essential optical constants, hence, both of them were compared with the experiment results, and an excellent agreement is achieved between them.
Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI
In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.
... Show MoreThis work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.
... Show MoreIn this work, yttrium oxide particles (powder) reinforced AL-Si matrix composites (Y2O3/Al-Si) and Chromium oxide particles reinforced AL-Si matrix composites (Cr2O3/AL-Si) were prepared by direct squeeze casting. The volume percentages of yttrium oxide used are (4, 8.1, 12.1, 16.1 vol %) and the volume percentages of the chromium oxide particles used are (3.1, 6.3, 9.4, 12.5 vol. %). The parameters affecting the preparation of Y2O3/Al-Si and Cr2O3/AL-Si composites by direct squeeze casting process were studied. The molten Al-Si alloy with yttrium oxide particles or with chromium oxide particles was stirred again using an electrical stirrer at speed 500 rpm and the molten alloy was poured into the squeeze die cavity. Th
... Show MoreThis work used the deposition method to synthesize nickel oxide nanoparticles. The materials mainly used in this study were nickel sulfate hexahydrate (as a precursor) and NaOH (as a precipitant). The properties of the nanopowder were characterized by XRD, FE-SEM, EDX, and VSM. The obtained results confirmed the presence of nickel oxide nanoparticles with a face-centered cubic (FCC) structure with a lattice constant (a=4.17834 Å). Scherer and Williamson-Hall equations were used to calculate the crystallite size of about (30.5-35.5) nm. The FE-SEM images showed that the particle shape had a ball-like appearance with a uniform and homogeneous distribution and confirmed that the particles were within the nanoscale. The presence of oxygen a
... Show MoreThis work reports the study of heat treatment effect on the structural, morphological, optical and electrical properties of poly [3-hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM). X-ray diffraction (XRD) measurements show that the crystallinity of the films increased with annealing. The evaluation of surface roughness and morphology was investigated using atomic force microscope (AFM), and field emission scanning microscope(FESEM). The optical properties were emphasized a strong optical absorption of P3HT compared with the blend. Hall effect measurement was used to study the electrical properties which revealed there is an increase in the electrical conductivity and Hall mobility of th
... Show MoreDental clinicians and professionals need an affordable, nontoxic, and effective disinfectant against infectious microorganisms when dealing with the contaminated dental impressions. This study evaluated the efficiency of hypochlorous acid (HOCl) as an antimicrobial disinfectant by spraying technique for the alginate impression materials, compared with sodium hypochlorite, and its effect on dimensional stability and reproduction of details. HOCl with a concentration of 200 ppm for 5 and 10 min was compared with the control group (no treatment) as a negative control and with sodium hypochlorite (% 0.5) as a positive control. Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa were selected to assess the antimicrobi
... Show MoreBackground: Dental stone casts come into contact with impression materials and becomes susceptible to cross contamination from saliva and blood. This study was done to evaluate the physical and mechanical properties of dental stone type IV after treatments with various disinfecting agents and regimes (methods). Materials and Methods: Type IV dental stone and different types of disinfecting agents were used and divided into seven groups: G1: dental stone without disinfection (control group), G2: dental stone mixed with silver nitrate powder 0.5% , G3: dental stone mixed with silver nitrate powder 1%, G4: dental stone mixed with copper sulfate powder 0.5%, G5: dental stone mixed with copper sulfate powder 1% ,G6: dental stone immersed in prop
... Show MoreExplain in this study, thickness has an inverse relationship with electrical resistivity and a linear relationship with Grain boundary scattering. According to the (Fuchs-Sondheier, Mayadas-Shatzkces) model, grain boundary scattering leads To an Increase in electrical Resistivity. The surface scattering Coefficient of Ag, which Fuchs-Sondheier and Mayadas-Shatzkces measured at , Ag's grain boundary reflection coefficient , which Mayadas-Shatzkces measured at , If the concentration of material has an effect on metal's electrical properties, According to this silver is a good electrical conductor and is used frequently in electrical and electronic circuits.
In the present research, the electrical properties which included the ac-conductivity (σac), loss tangent of dielectric (tan δ) and real dielectric constant (ε’) are studied for nano polycarbonate in different pressures and frequencies as a function of temperature these properties were studied at selective temperature gradients which are (RT-50-100-150-250)°C. The results of the study showed that the values of dielectric constant and dissipation factor increase with increasing pressure and temperature and decreases by increasing frequency. And the results of electrical conductivity showed that it increases with increasing temperature, pressure and frequency.