Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutants and environmental conditions remains uncharted. Future research must expand EME's applicability, assess its environmental impact versus other methods, and boost scalability, cost-effectiveness, and energy efficiency in industry. Advances in novel liquid membrane materials can enhance extraction efficiency and selectivity, aiming to provide efficient, sustainable industrial pollutant treatment. This research provides a review of the existing practices in the field of liquid membranes when coupled with the application of an electric field.
ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto
... Show MoreThe current study included, studying the ability of eight genera of plants belong to Brassicaceae family, Brassica tournifortii, Cakile Arabica, Capsella bursa – pastoris,Carrichtera annua, Diplotaxis acris, Diplotaxis haru , Eruca sativa and Erucaria hispanica to accumulate ten heavy metals Cadmium, Chromium , Copper, Mercury, Manganese ,Nickel ,Lead ,and Zinc . Plant leaves samples were collected from Al-Tib area during spring of 2021.The data demonstrated that, the highest conc. of Cd was 2.7 mg/kg in Diplotaxis acris leaves and lower value was 0.3 mg/kg in Cakile Arabica leaves. For Co, the highest conc.was 1.3 mg/kg in Capsella bursa – pastoris leaves, whereas the lower value was 0.5 mg/kg in Cakile arabica leaves. As for Cr ele
... Show MoreCollapse of the vapor bubble condensing in an immiscible is investigated for n-pentane and n-hexane vapors condensing in cold water and n-pentane in two different compositions of glycerin- water mixture. The rise velocity and the drag coefficient of the two-phase bubble are measured.
Indole acetic acid (IAA) produced from F. oxysporum (F2) was purified by several steps included extraction by cold ethyl acetate ; Column chromatography using silica gel and TLC chromatography . The pure indole acetic acid (IAA) which produce by F. oxysporum (IAA) was tested by ultraviolet spectra at (200-300)nm ; and appear that the maximum absorbance at 229nm , the high performance liquid chromatography (HPLC) used to test the purity of the indole acetic acid and the results showed one peak at appearance time 3.822 min
The plants of genus Heliotropium L. (Boraginaceae) are well-known for containing the toxic metabolites called pyrrolizidine alkaloids (PAs) in addition to the other secondary metabolites. Its spread in the Mediterranean area northwards to central and southern Europe, Asia, South Russia, Caucasia, Afghanistan, Iran, Pakistan, and India, Saudi Arabia, Turkey, and over lower Iraq, Western desert. The present study includes the preparation of various extracts from aerial parts of the Iraqi plant. Fractionation, screening the active constituent, and identification by chromatographic techniques were carried out.Heliotropium europaeum
... Show MorePyrolysis of virgin polyethylene plastics was studied in order to produce hydrocarbon liquid fuel. The pyrolysis process carried out for low and high-density polyethylene plastics in open system batch reactor in temperature range of 370 to 450°C.
Thermo-gravimetric analysis of the virgin plastics showed that the degradation ranges were between 326 and 495 °C. The results showed that the optimum temperature range of pyrolysis of polyethylene plastics that gives highest liquid yield (with specific gravity between 0.7844 and 0.7865) was 390 to 410 °C with reaction time of about 35 minutes. Fourier Transform Infrared spectroscopy gave a quite evidence that the produced hydrocarbon liquid fuel consisted ma
... Show MoreIn this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial co
... Show MoreThe adsorption of cephalexin.H2O from aqueous solution on attapulgite, bentonite and kaolin has been studied at the human body temperature (37.5ËšC) and at 5, 27, 47ËšC in 0.1M hydrochloric acid (pH 1.2). The value of pH 1.2 has been chosen to simulate the pH of stomach fluid. The clays show the following order: Bentonite > attapulgite > kaolin, for their activity to adsorb cephalexin.H2O. The charged clay particles can attract molecules either by electrostatic forces, for the molecules of oppositely charged, or by inducing dipole formation in the neutral molecule. The L-shaped adsorption isotherm indicated that drug molecules arrangement in a flat geometry on the clay surface. The
... Show More