Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutants and environmental conditions remains uncharted. Future research must expand EME's applicability, assess its environmental impact versus other methods, and boost scalability, cost-effectiveness, and energy efficiency in industry. Advances in novel liquid membrane materials can enhance extraction efficiency and selectivity, aiming to provide efficient, sustainable industrial pollutant treatment. This research provides a review of the existing practices in the field of liquid membranes when coupled with the application of an electric field.
Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreHCl is separated from HCl –H2SO4 solution by membrane distillation process(MD). The flat –sheet membranes made from polyvinylidene fluoride (PVDF) and polypropylene (pp.). Plate and frame these types of membrane where used in the process. The feed is a mixture of HCl and H2SO4 acids compositions depended on metals treated object.HCl concentration increased in the permeate during the process but sulfuric acid increased gradually in the feed .During the concentration of solution acids concentrations in the feed at the beginning were 50 g/dm3 of sulfuric acid and 50 g/dm3 of hydrochloric acid at 333K feed temperature the permeate flux was 71 dm
... Show MoreVarious heavy metals, cations and anions of the Tigris River water in Baghdad regionwere studied during the winter, spring, summer and autumn of 2009, for 4 samplingsites. In the present investigation the levels of studied heavy metals, cations and anionswere found in the range of (0.011-0.333 mg/L) for As, in the water samples(undetectable-0.0043 mg/L) for Sb,( 0.011-0.080 mg/L) for Ti, (0.150-0.730 mg/L) forV, (0.01-1.06 mg/L) for Fe, (0.1-0.4 mg/L) for Zn, (0.011-0.15 mg/L) for Pb, (0.01-0.05mg/L) for Cd, (0.01-0.04 mg/L) for Ni, (50-290 mg/L) for Ca, (97-270 mg/L) for Mg,(0.65-1.74 mg/L) for K, (11-38.33) for Na, (35-113 mg/L) for Cl, (150-256 mg/L) forHCO3, (96-479 mg/L) for SO4, (0.93-3.9 mg/L) for NO3 and (undetectable - 0.360 mg/L)f
... Show MoreThis study uses an environmentally friendly and low-cost synthesis method to manufacture zinc oxide nanoparticles (ZnO NPs) by using zinc sulfate. Eucalyptus leaf extract is an effective chelating and capping agent for synthesizing ZnO NPs. The structure, morphology, thermal behavior, chemical composition, and optical properties of ZnO nanoparticles were studied utilizing FT-IR, FE-SEM, EDAX, AFM, and Zeta potential analysis. The FE-SEM pictures confirmed that the ZnO NPs with a size range of (22-37) nm were crystalline and spherical. Two methods were used to prepare ZnO NPs. The first method involved calcining the resulting ZnO NPs, while the second method did not. The prepared ZnO NPs were used as adsorbents for removing acid black 210
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More 
         
                                                            