Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutants and environmental conditions remains uncharted. Future research must expand EME's applicability, assess its environmental impact versus other methods, and boost scalability, cost-effectiveness, and energy efficiency in industry. Advances in novel liquid membrane materials can enhance extraction efficiency and selectivity, aiming to provide efficient, sustainable industrial pollutant treatment. This research provides a review of the existing practices in the field of liquid membranes when coupled with the application of an electric field.
The conservation of natural resources such as water is one of the areas that sustainable agriculture seeks to preserve, rationalize its use and protect it from pollution, because water is a specific factor for agriculture. Despite Iraq's possession of two international rivers, the Tigris and the Euphrates, which pour into the Shatt Al-Arab, it suffers from water shortages in recent times, As a result of several reasons combined, including water policies initiated by the riparian countries to reduce the quantities of water coming from the two rivers to Iraq, led by neighbor Turkey through the construction of dams and reservoirs and the establishment of irrigation projects, as well as climate changes from rising temperatures and lo
... Show MoreIn this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communic
... Show MoreThe nonlinear optical properties response of nematic liquid crystal (6CHBT) and the impact of doping with two kinds of nanoparticles; Fe3O4 magnetic nanoparticles and SbSI ferroelectric nanoparticles have been studied using the non-linear dynamic method through z-scan measurement technique. This was achieved utilizing CW He-Ne laser. The pure LC and magnetic LC nanoparticle composite samples had a maximum absorption while the ferroelectric LC nanoparticle composite had a minimum absorption of the incident light. The nonlinear refractive index was positive for the pure LC and the rod-like ferronematic LC composite samples, while it was negative for the ferroelectric LC composite. The studying of the nonlinear optical
... Show MoreEvery so often, a confluence of novel technologies emerges that radically transforms every aspect of the industry, the global economy, and finally, the way we live. These sharp leaps of human ingenuity are known as industrial revolutions, and we are currently in the midst of the fourth such revolution, coined Industry 4.0 by the World Economic Forum. Building on their guideline set of technologies that encompass Industry 4.0, we present a full set of pillar technologies on which Industry 4.0 project portfolio management rests as well as the foundation technologies that support these pillars. A complete model of an Industry 4.0 factory which relies on these pillar technologies is presented. The full set of pillars encompasses cyberph
... Show MoreThe continued acceleration in the business environment has led to the need for organizations great attention to quality applied in organizations to meet the needs of customers and stay in the market for as long as possible.
Search launched from the underlying problem is the presence of concentrations of defects and waste plaguing the company and to achieve the goal of the study detects the level of quality applied in the factory vessels and reservoirs of the General Company for Heavy Engineering Equipment, As well as calculate wastage rates occurring in the production process and find a relationship between the level of quality and ratios defective in each type of waste, it has been used quantitative meas
... Show MoreObjective: The antimicrobial efficacy of three disinfection solutions: 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX) and Listerine mouthwash were investigated as routine chair-side gutta-percha (GP) disinfection reagents. Design: four groups of gutta percha points were contaminated with E. faecalis bacteria then disinfected by immersion in different solutions (5.25% sodium hypochlorite, 2% chlorhexidine gluconate, Listerine mouth wash and distilled water as control) after 1 and 7 days culturing periods. The antibacterial efficacy of these disinfection solutions was evaluated by using colonies per units (CPU) Methods: Forty GP cones (F3 Dentsply) were sterilized with ethylene oxide gas before immersed contamination within broth m
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for