Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutants and environmental conditions remains uncharted. Future research must expand EME's applicability, assess its environmental impact versus other methods, and boost scalability, cost-effectiveness, and energy efficiency in industry. Advances in novel liquid membrane materials can enhance extraction efficiency and selectivity, aiming to provide efficient, sustainable industrial pollutant treatment. This research provides a review of the existing practices in the field of liquid membranes when coupled with the application of an electric field.
Background: The prevalence of deep veins thrombosis, complicating total knee replacement in Asian countries, has not been fully appreciated in comparison to western countries as there are few studies on that. There is an important correlation between the evidence of deep veins thrombosis in the lower extremity and likelihood of pulmonary embolism later one . Because of its noninvasive nature, duplex ultrasound has become one of the initial dependable modality for the cheek out of deep veins thrombosis after total knee replacement . Therefore, this study was designed to evaluate the outcome of asymptomatic after total knee replacement by duplex ultrasound among Iraqi patients.
Methods: This
... Show MoreIn this research, the mutual correlations between ionospheric parameters (MUF, OWF and LUF) have been suggested. The datasets of the MUF and OWF parameters have been generated using ASAPS international communication model, while the LUF parameter has been calculated using the REC533 model. The calculations have been made for the connection links between the capital Baghdad and many other locations that spread over the studied zone (Middle East region). The annual time of the years (2009 & 2014) of solar cycle 24 has been adopted to make the investigation in order to get the mutual correlation between ionospheric parameters. The test results of the annual correlation between ionospheric parameters showed that the mutual correlation be
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The res
... Show MoreOrthogonal Frequency Division Multiplexing (OFDM) is one of recent years multicarrier modulation used in order to combat the Inter Symbol Interference (ISI) introduced by frequency selective mobile radio channel. The circular extension of the data symbol, commonly referred to as cyclic prefix is one of the key elements in an OFDM transmission scheme. This paper study The influence of the cyclic prefix duration on the BER performance of an OFDM-VCPL (Orthogonal frequency division multiplexing - Variable Cyclic Prefix Length) system and the conventional OFDM system with frame 64-QAM modulation is evaluated by means of computer simulation in a multipath fading channel. The adaptation of CP is done with respect to the delay spread estimation
... Show MoreThis research deals with processing and Interpretation of Bouguer anomaly gravity field, using two dimensional filtering techniques to separate the residual gravity field from the Bouguer gravity map for a part of Najaf Ashraf province in Iraq. The residual anomaly processed in order to reduce noise and give a more comprehensive vision about subsurface linear structures. Results for descriptive interpretation presented as colored surfaces and contour maps in order to locate directions and extensions of linear features which may interpret as faults. A comparison among gravity residual field , 1st derivative and horizontal gradient made along a profile across the study area in order to assign the exact location of a major fault. Furthermor
... Show MoreIn this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreThe problem of finding the cyclic decomposition (c.d.) for the groups ), where prime upper than 9 is determined in this work. Also, we compute the Artin characters (A.ch.) and Artin indicator (A.ind.) for the same groups, we obtain that after computing the conjugacy classes, cyclic subgroups, the ordinary character table (o.ch.ta.) and the rational valued character table for each group.
The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show More