As s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with respect to the conventional encryption techniques like RSA, DES, etc.
This study proposed control system that has been presented to control the electron lens resistance in order to obtain a stabilized electron lens power. This study will layout the fundamental challenges, hypothetical plan arrangements and development condition for the Integrable Optics Test Accelerator (IOTA) in progress at Fermilab. Thus, an effective automatic gain control (AGC) unit has been introduced which prevents fluctuations in the internal resistance of the electronic lens caused by environmental influences to affect the system's current and power values and keep them in stable amounts. Utilizing this unit has obtained level balanced out system un impacted with electronic lens surrounding natural varieties.
A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreIn this paper, suggested formula as well a conventional method for estimating the twoparameters (shape and scale) of the Generalized Rayleigh Distribution was proposed. For different sample sizes (small, medium, and large) and assumed several contrasts for the two parameters a percentile estimator was been used. Mean Square Error was implemented as an indicator of performance and comparisons of the performance have been carried out through data analysis and computer simulation between the suggested formulas versus the studied formula according to the applied indicator. It was observed from the results that the suggested method which was performed for the first time (as far as we know), had highly advantage than t
... Show MoreThe main challenge is to protect the environment from future deterioration due to pollution and the lack of natural resources. Therefore, one of the most important things to pay attention to and get rid of its negative impact is solid waste. Solid waste is a double-edged sword according to the way it is dealt with, as neglecting it causes a serious environmental risk from water, air and soil pollution, while dealing with it in the right way makes it an important resource in preserving the environment. Accordingly, the proper management of solid waste and its reuse or recycling is the most important factor. Therefore, attention has been drawn to the use of solid waste in different ways, and the most common way is to use it as an alternative
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreFinite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o
... Show MoreObjectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission
... Show MoreIn this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.