Preferred Language
Articles
/
oRaYtIcBVTCNdQwC4Vy2
On Solvability of an Operator Equation-
...Show More Authors

Publication Date
Wed Dec 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Finite Element Based Solution of Laplace's Equation Applied to Electrical Activity of the Human Body
...Show More Authors

Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.

The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.

Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.

This work describes t

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Approximate Analytical Solutions of Bright Optical Soliton for Nonlinear Schrödinger Equation of Power Law Nonlinearity
...Show More Authors

This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a

... Show More
View Publication Preview PDF
Scopus (11)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
PART 2 An Experiment on the Box plot
...Show More Authors

Abstract

These experiments seek to investigate the effects of the fixed variations to the basic box plot on subjects' judgments of the box lengths. The study consists of two experiments, were constructed as an extension to the experiments carried out previously by Hussin, M.M. (1989, 2006).  Subjects were asked to judge what percentage the shorter represented of the longer length in pairs of box lengths and give an estimate of percentage, one being a standard plot and the other being of a different box length and also varying with respect to other elements such as, box width or whisker length. When he (1989) suggested in the future research points (1, 2), the changing length of the st

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2015
Journal Name
Mathematical Theory And Modeling
On the stability of an SIS epidemic model involving treatment
...Show More Authors

The objective of this paper is to study the stability of SIS epidemic model involving treatment. Two types of such eco-epidemiological models are introduced and analyzed. Boundedness of the system is established. The local and global dynamical behaviors are performed. The conditions of persistence of the models are derived.

View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Mean Square Exponential Stability of Semi-Linear Stochastic Perturbed Differential Equation Via Lyapunov Function Approach
...Show More Authors

    In this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation
...Show More Authors

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
A New Mixed Nonpolynomial Spline Method for the Numerical Solutions of Time Fractional Bioheat Equation
...Show More Authors

In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Open Newton Contes Formula for Solving Linear Voltera Integro-Differential Equation of the First Order
...Show More Authors

  In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented.      The numerical solution of these equations is obtained by using Open Newton Cotes formula.      The Open Newton Cotes formula is applied to find the optimum solution for this equation.      The computer program is written in (MATLAB) language (version 6)

View Publication Preview PDF
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Numerical Blow-up Time of a One-Dimensional Semilinear Parabolic Equation with a Gradient Term
...Show More Authors

  This paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Finding timewise diffusion coefficient from nonlocal integral condition in one-dimensional heat equation
...Show More Authors

View Publication
Scopus Crossref