Biologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%, 30%, 45%, and 60%, for which the percentages of inhibition of the radial growth were 37.5, 50, 52.5, and 56.25%, respectively. The dual culture method was conducted on PDA medium to observe the antagonistic nature of the antibiotic impacts of Paecilomyces sp. towards the pathogenic fungus. The strength of the antagonistic impacts was manifested by a 76.25% inhibition rate, on a scale of 4 antagonistic levels. Ethyl acetate extract of Paecilomyces sp. was obtained by liquid-liquid partition of the broth containing the fungus. Gas chromatography-mass spectrometry (GC-MS) analysis identified the presence of important chemical components e.g., (E) 9, cis-13-Octadecenoic acid, methyl ester (48.607), 1-Heptacosanol, 1-Nonadecene, Cyclotetracosane (5.979), 1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester, di-sec-butyl phthalate (3.829), 1-Nonadecene, n-Nonadecanol-1, Behenic alcohol (3.298), n-Heptadecanol-1, 1-hexadecanol, n-Pentadecanol (2.962), Dodecanoic acid (2.849), 2,3-Dihydroxypropyl ester, oleic acid, 9-Octadecenal, and (Z)-(2.730). These results suggest that secondary metabolites of the endophytic Paecilomyces possess antifungal properties and could potentially be utilized in various applications, such as environmental protection and medicine.
This study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500 rp
... Show MoreThis study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500
... Show MoreThe present study deals with the synthesis of four different azo-azomethine derivatives; this is done by two steps; the first step is diazotization of sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, and sulfadiazine) separately, followed by the second step; the coupling reaction of diazotized compounds with isatin bis-Schiff base named 3-((4-nitrobenzylidene) hydrazono)indolin-2-one. The later one (bis-Schiff base) was synthesized by the reaction of 3-hydrazono-indolin-2-one with p-nitrobenzaldehyde. The chemical structures of newly synthesized compounds were approved on the basis of their FTIR, 1H-NMR, and CHNS elemental analysis data results. The synthesized azo compounds were tested in vitro for their antimicrobial potentia
... Show MoreAcetophenone sulfamethoxazole and 3-Nitrobenzophenone sulfamethoxazole were prepared from the reaction of sulfamethoxazole with two ketones. The prepared ligands were identified by (C.H.N) analysis and UV-VIS, FT-IR spectroscopic techniques. Metal complexes of the two ligands were prepared in an aqueous alcohol with Zn (II), Mn (II) and Cu (II) ions with a molar ratio1:1. The proposed general formula for the resulting complexes was [ML.CL2.H2O]H2O .The complexes were characterized by (C.H.N) technique , spectroscopic methods ,conductivity, atomic absorption ,magnetic susceptibility measurements and melting point. According to the results obtained, the suggested geometry is to be octahedral for all the complexes.
The current study included the separation of three alkaloid compounds from Anastatica Hierochuntica and studied the effect of the these compounds on cancerous cells , specifically liver cancer it was found that compound number one is the most influential or inhibiting at 50 percent followed by compound number three when using concentration of 400 μg/mL.
This study synthesized nanocomposite photocatalyst materials from a mixture of Cu2O nanoparticles, ZnO nanoparticles, and graphene oxide (GO) through coprecipitation and hydrothermal methods. This study aims to determine the optimum composition of Cu2O/ZnO/GO nanocomposites in degrading methylene blue. The nanocomposite was synthesized in two steps: 1 the synthesis of Cu2O and ZnO nanoparticles through the coprecipitation method and the preparation of GO through the modified Hummer method. 2 The preparation of Cu2O and ZnO nanoparticles mixtures with GO through the hydrothermal method to form Cu2O/ZnO/GO nanocomposites. The adsorption-photocatalysis process of methylene blue
... Show MoreMicrobial lipases today occupy a place of prominence among biocatalysts owing to their ability to catalyze awide variety of reactions in aqueous and non- aqueous media, A.baumannii were isolated from different clinical specimens from hospitalized patients from Baghdad hospitals and were detected by biochemical tests and API20E system. The percentage of isolation was (16.6%), A. baumannii is an increasingly multidrug – resistant (MDR), it showed high level of resistant to Ceftriaxon, Colistin, Piperacillin, Co-trimoxazol, Tertracycline, Carbenicillin, Amoxicillin, Penicillin G, Gentamicin and Ceftazidim , wherease the isolates were highly sensitive to Imipenem, Ciprofloxacin, Meropenem, Amikacin, and Cefotaxime.
... Show More