Cu (In, Ga) Se2 (CIGS) nano ink were synthesized from molecular precursors of CuCl, In Cl3, GaCl3 and Se metal heated to 240 °C for 1 hour in N2-atmosphere to form CIGS nanocrystal ink, Thin films were deposited onto Au/soda-lime glass (SLG) substrates. This work focused on CIGS nanocrystals, including their synthesis and application as the active light absorber layer in photovoltaic devices (PVs). This approach, using spin-coating deposition of the CIGS light absorber layers (75 mg/ml and 150 nm thickness), without high temperature selenization, has enabled up to 1.398 % power conversion efficiency under AM 1.5 solar illumination. X-ray diffraction (XRD) studies show that the structural formation of CIGS chalcopyrite structure. The morphology and composition of CIGS were studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX), respectively.
This studies p- CuO / n - Si hete-rojunction was deposited by high vacuum thermal evaporation of Copper subjected to thermal oxidation at 300 oC on silicon. Surface morphology properties of The optical properties concerning the transmission spectra were studies for prepared thin films. this structure have been studied. XRD anaylsis discover that the peak at (𝟏𝟏𝟏-) and (111) plane are take over for the crystal quality of the CuO films. The band gap of CuO films is found to be 1.54 eV. The average grain size of is measured from AFM analysis is around 14.70 nm. The responsivity photodetector after deposited CuO appear increasing in response
New designs of solar using ray tracing program, have been presented for improved the performance and the out put power of the silicon solar cell, as well as reducing the cost of system working by solar energy. Two dimensional solar concentrator (Fresnel lenses) and three dimensional concentrators (parabola dish and cassegrain) were used as concentrator for photovoltaic applications (CPV). The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.
The spectral response of the Si solar cell does not coincidence with the sun irradiance spectrum, so the efficiency of the Si solar cell is not high. To improve the Si solar cell one try to make use of most region of the sun spectrum by using dyes which absorb un useful wavelengths and radiate at useful region of spectrum (by stock shift). Fluorescence's dye is used as luminescent concentrator to increase the efficiency of the solar cell. The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.
Introduction: This study aimed to assess the color change of human teeth with artificial enamel white spot lesions (WSLs) after sandblasting with bioactive glass, resin infiltration, and microabrasion and to test color stability after pH cycling. Methods: Fifty extracted human mandibular first molars were randomly assigned into five groups: Sound, WSLs (untreated), and WSLs sandblasted with bioactive glass (Sylc), WSLs treated by resin infiltration (ICON), and WSLs treated by microabrasion (Opalustre), respectively. All specimens underwent a pH cycling procedure. The color parameters for each specimen were assessed using an Easyshade dental spectrophotometer at different time stages then the color changes (ΔE) were calculated. Results: The
... Show More