Preferred Language
Articles
/
oBgYPpYBVTCNdQwCZoJy
Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks
...Show More Authors

The sale of facial features is a new modern contractual development that resulted from the fast transformations in technology, leading to legal, and ethical obligations. As the need rises for human faces to be used in robots, especially in relation to industries that necessitate direct human interaction, like hospitality and retail, the potential of Artificial Intelligence (AI) generated hyper realistic facial images poses legal and cybersecurity challenges. This paper examines the legal terrain that has developed in the sale of real and AI generated human facial features, and specifically the risks of identity fraud, data misuse and privacy violations. Deep learning (DL) algorithms are analyzed for their ability to detect AI generated faces in order to potentially function as an AI safety in face sale agreement to allow the authenticity and protecting data. In addition, it examines the legal mechanisms surrounding consent, liability and data protection and suggests changes to help accommodate the complexity of AI. This paper proposes a framework by which AI tools can be integrated into the evolution of cybersecurity strategies, to mitigate risks and ensure compliance with such new legal standards and contribute to discussing the ethical and secure use of AI in Face sale contracts.

Scopus Crossref
View Publication
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Investigation of the Natural Occurring Radioactive Material (NORM) in the cyprinus carpio fishes breeding in artificial lakes of Baghdad governorate
...Show More Authors

The steady consumption of fish led many researchers to study it preferences over other foods, especially for radioactivity content. The specific activity concentration (S.A) of natural occurring radioactive materials (NORM) have been measured for Cyprinus carpio fishes collected from several industrial fishes' lakes located in Baghdad governorate using gamma spectroscopy doped with high purity germanium coaxial detector (HPGe). Thirteen fishes' samples were collected from industrial lakes, three samples were collected from cages, and two samples were collected from Trigger River. The last two types of samples were collected in order to compare the results with it. The measured overall averages of S.A for Ra-226, Th-232, and K-40 were 58.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Computational And Theoretical Nanoscience
Solution for Multi-Objective Optimisation Master Production Scheduling Problems Based on Swarm Intelligence Algorithms
...Show More Authors

The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (13)
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology & Innovation
The use of Artificial Neural Network (ANN) for modeling of Cu (II) ion removal from aqueous solution by flotation and sorptive flotation process
...Show More Authors

View Publication
Scopus (33)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sun Apr 04 2010
Journal Name
Journal Of Educational And Psychological Researches
The Factorial Structure of The Emotional Intelligence Scale to Bar-On Applied on Students from Preparatory School in Baghdad City.
...Show More Authors

The aim of the study was to know the factors analysis of scale Bar-On & Parker, post analysis is found fourteen factors for the first degree of the scale. Also we extracted five factors from the second degree.

  The scale consists of (60) items , applied on sample of (200) students (Male &Female ) age (15-18) years randomly chosen from preparatory schools . The scale unveiled satis factors  validity and reliability. An others aims is to low the  emotional  Intelligence level and  know the difference of statistical in sex , age variable and the specialization variable .The result was no difference of statistical in sex and specialization variable , but the difference appear

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
The Level of Spiritual Intelligence Among Students of Educational Psychology Course at Jerash University in The Light of Some variables
...Show More Authors

This study aimed to determine the level of spiritual intelligence among students of educational psychology course at the Jerash University. and whether this level of varies depend on the gender of the student as well as the college type. The study sample consisted of (180) male and female students of bachelor students at the University Jerash, in the second semester of academic year2014-2015. The main results of the study were that the level of spiritual
Intelligence of Jerash University students was high. More over There were no statistically significant differences at the level of significance (0.05) due to the effect of gender, college type or academic achievement

View Publication Preview PDF
Publication Date
Wed Dec 11 2019
Journal Name
Journal Of The College Of Education For Women
The Effectiveness of Teaching Program Based on The Theory of Multiple Intelligence in the Development of Literary Thinking Among Students
...Show More Authors

The research aims to know the effectiveness of a training program based on multiple intelligence theory in developing literary thinking among students of the Arabic Language Department at Ibn Rushd School of Humanities and to achieve the goal of research, the Safaris Research Institute, and the research community of Arabic language students in the Faculty of Education the third section of Arabic Language: The research sample consists of (71) students. Divided into (35) students in the experimental group and (36) students in the control group, the researcher balanced between the two groups with variables (intelligence, testing of tribal literary thinking, and time age in months), and after using the T-test for two independent samples, the

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 06 2025
Journal Name
Al–bahith Al–a'alami
THE ISSUES OF YOUTH IN THE TALK SHOWS IN THE IRAQI SATELLITE CHANNELS:: (An Analytical Study of the Shabab wa Banat Program at Al-Sumaria TV Channel and of the Hala Shabab at Al-Iraqia TV Channel) (A Research Drawn from a Master’s Thesis)
...Show More Authors

The purpose of this research is to identify the youth issues in Talk Shows in the Iraqi satellite channels via monitoring a sample of episodes of the Talk Shows  episodes which are concerned and analyzed the youth issues in the Iraqi satellite channels, namely, «Hala Shabab Program» at Al-Iraqia satellite Channel and «Shabab wa Banat Program» at Al-Sumaria satellite Channel by recording and re-watching them again. This research is classified as one of descriptive researches. The survey method was adopted in this study.

For this purpose, the researcher prepared an analysis form. The researcher de

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network
...Show More Authors

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (3)
Crossref