The sale of facial features is a new modern contractual development that resulted from the fast transformations in technology, leading to legal, and ethical obligations. As the need rises for human faces to be used in robots, especially in relation to industries that necessitate direct human interaction, like hospitality and retail, the potential of Artificial Intelligence (AI) generated hyper realistic facial images poses legal and cybersecurity challenges. This paper examines the legal terrain that has developed in the sale of real and AI generated human facial features, and specifically the risks of identity fraud, data misuse and privacy violations. Deep learning (DL) algorithms are analyzed for their ability to detect AI generated faces in order to potentially function as an AI safety in face sale agreement to allow the authenticity and protecting data. In addition, it examines the legal mechanisms surrounding consent, liability and data protection and suggests changes to help accommodate the complexity of AI. This paper proposes a framework by which AI tools can be integrated into the evolution of cybersecurity strategies, to mitigate risks and ensure compliance with such new legal standards and contribute to discussing the ethical and secure use of AI in Face sale contracts.
The topic of the research on the Observatory of the Walls on Jurisprudential Matters in the Hanafi Fiqh, by Imam San’a Allah bin Ali bin Khalil Al-Ala’iyya Wai al-Naqshbandi, al-Rumi, who died in 1137 AH, which includes seven chapters, the first section of it concerning division and related matters, and the second section in the adaptation It is the apportionment of benefits in common objects, the third section, which pertains to lines, surfaces, and bodies, the fourth section, which concerns the inclined wall and certification, and the fifth section, which concerns the provisions of the walls and its claims, and the sixth section, which concerns the door of roads and doors, the opening of the skylight, the sails of the wing, the can
... Show MoreThe aim of this study is to highlight the relationship between competitive intelligence and Entrepreneurial Performance by centralizing the strategic vigilance of a sample of civil faculties in Baghdad. The sample of the study was targeted at 10 Iraqi civil colleges, which consisted of (133) members of the faculty council of the faculties, the search data was collected using the questionnaire form as the main research tool. The results showed that the correlation and influence of competitive intelligence and strategic vigilance in the Entrepreneurial Performance, as well as the role of strategic vigilance as an intermediate variable between competitive intelligence and Entrepreneurial Performance.
<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreIn the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show More