Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR and a known carcinogen. While AhR activation by TCDD leads to significant immunosuppression, how this translates into carcinogenic signal is unclear. Recently, we demonstrated that activation of AhR by TCDD in naïve C57BL6 mice leads to massive induction of myeloid derived-suppressor cells (MDSCs). In the current study, we investigated the role of the gut microbiota in TCDD-mediated MDSC induction. TCDD caused significant alterations in the gut microbiome, such as increases in Prevotella and Lactobacillus, while decreasing Sutterella and Bacteroides. Fecal transplants from TCDD-treated donor mice into antibiotic-treated mice induced MDSCs and increased regulatory T-cells (Tregs). Injecting TCDD directly into antibiotic-treated mice also induced MDSCs, although to a lesser extent. These data suggested that TCDD-induced dysbiosis plays a critical role in MDSC induction. Interestingly, treatment with TCDD led to induction of MDSCs in the colon and undetectable levels of cysteine. MDSCs suppressed T cell proliferation while reconstitution with cysteine restored this response. Lastly, blocking CXC chemokine receptor 2 (CXCR2) impeded TCDD-mediated MDSC induction. Our data demonstrate that AhR activation by TCDD triggers dysbiosis which, in turn, regulates, at least in part, induction of MDSCs.
This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreOff-nucleus isotropic magnetic shielding (σiso(r)) and multi-points nucleus independent chemical shift (NICS(0-2 Å)) index were utilized to find the impacts of the isomerization of gas-phase furfuraldehyde (FD) on bonding and aromaticity of FD. Multidimensional (1D to 3D) grids of ghost atoms (bqs) were used as local magnetic probes to evaluate σiso(r) through gauge-including atomic orbitals (GIAO) at density functional theory (DFT) and B3LYP functional/6-311+G(d,p) basis set level of theory. 1D σiso(r) responses along each bond of FD were examined. Also, a σiso(r) 2D-scan was performed to obtain σiso(r) behavior at vertical heights of 0–1 Å above the FD plane in its cis, transition state (TS) and trans forms. New techniques fo
... Show MoreIn this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show MoreChromium tanned leather wastes (CTLW) and vegetable tanned leather wastes (VTLW) were used as adsorbent materials to remove the Biebrich scarlet dye (BS), as an anionic dye from wastewater, using an adsorption method. The effects of various factors, such as weight of leather waste, time of shaking, and the starting concentration of Biebrich scarlet dye, temperature and pH were studied. It described the adsorption process using Langmuir and Freundlich isotherm models. The obtained results agreed well with the Langmuir model, and the maximum adsorption capacities of CTLW and VTLW were 73.5294 and 78.1250 mg.g⁻¹, respectively, suggesting a monolayer adsorption process. The adsorption kinetic was found to follow a pseudo-second-order kinetic
... Show MoreKE Sharquie, AA Noaimi, AG Al-Ghazzi, Journal of Dermatology & Dermatologic Surgery, 2015 - Cited by 19
An agricultural waste (walnut shell) was undertaken to remove Cu(II) from aqueous solutions in batch and continuous fluidized bed processes. Walnut shell was found to be effective in batch reaching 75.55% at 20 and 200 rpm, when pH of the solution adjusted to 7. The equilibrium was achieved after 6 h of contacting time. The maximum uptake was 11.94mg/g. The isotherm models indicated that the highest determination coefficient belongs to Langmuir model. Cu (II) uptake process in kinetic rate model followed the pseudo-second-order with determination coefficient of 0.9972. More than 95% of the Cu(II) were adsorbed on the walnut shells within 6 h at optimum agitation speed of 800 rpm. The main functional groups responsible for biosorption of
... Show MoreThis study is designed to isolate and molecular identification of C. neoformans, C. neoformans is pathogenic yeast and effect immunocompromised and immunocompetent. Methods: collect 50 samples from pigeon dropping and 50 samples from pigeon fanciers (sputum). The collection time was extended from November 2021 to February 2022, then culture at SDA, BSA, Cryptococcus Differential agar, esculin agar, Eucalyptus leaves agar media and Brain heart infusion agar with methyldopa, biochemical test including urease test and methyldopa, and then confirm identification by molecular identification by PCR technique sequencing and genetic analysis. The results showed that 3 swaps taken from sputum of human included cryptococcus neoformans and 6 s
... Show MoreMetal and metal oxide NPs have shown to be perfectly synthesized by using plant extracts with high efficiency, low cost and low toxicity. Our goal was to synthesize ZnO NPs by using an extract of pomegranate seeds and investigate the anticorrosion, antimicrobial and antioxidant properties of the synthesized ZnO NPs. The results have shown that the use of pomegranate in the green synthesis of ZnO NPs gave a good yield, with a low cost and non-toxic approach. The electrophoretic deposition (EPD) was used to coat stainless steel (S.S) by synthesized ZnO NPs in an alcoholic solution at room temperature producing a good coating against corrosion. The corrosion properties were investigated in a saline solution and a temperature range of (293–32
... Show More