Giardia lamblia is the worldwide most common intestinal protozoan parasite. It was indicated that Giardia is the most important agent that causes acute and chronic diarrhea in infants, young children and travelers. The aim was to detect the influence of host HLA alleles on the susceptibility to infection with G. lamblia in a sample of Iraqi patients. A total of (40) patients with giardiasis aged (14-39) years were registered. All of them were symptomatic and (40) healthy individuals matched age and sexes were included as controls. All patients were prepared to stool examination to detect G. lamblia and eliminated other pathogens, as well as human leukocyte antigen (HLA) class II alleles (DRB1) typing. The most common detected alleles in patients group were HLA-DRB1*03:0101, HLA-DRB1*13:0101,and HLA-DRB1*07:0101 compared to control group (P< 0.003; odds ratio (OR) 6.32; 95% confidence interval (CI) 2.35 to 28.03), secondly (P < 0.002; odds ratio (OR) 4.27; 95% confidence interval (CI) 1.64 to 8.05) and lastly (P< 0.001; odds ratio (OR) 3.54; 95% confidence interval (CI) 1.22 to 5.68) respectively. In conclusion HLA- DRB1*03:0101 alleles,*13:0101 alleles and 07:0101 alleles may affect human susceptibility to giardiasis
Today technology using nanoparticle when treatment pathogentic microorganism and we focused on this here. It was found that the species of streptococcus used in present study were sensitive to erythromycin. In present study focusing biofilm formation by Streptococcus spp was evaluated. Species S. mutans was found that highest amount of biofilm compare with the other species. The aim of report effect (SNPs) on ability of biofilm form different species of streptococcus. The anti-biofilm effect of SNPs was in concentration dependent manner. The highest effect of SNP against biofilm formation was found the concentration 160 μg/ml, while the lowest effect was found the lowest used concentration (80 μg/ml) of SNPs. In vivo study revealed that s
... Show More
An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measureme
... Show MoreThis research was to determine the effect of rare earth metal (REM) on the as-cast microstructure of Mg-4Al alloy. The rare earth metal used here is Lanthanum to produce Mg-4Al-1.5La alloy. The microstructure was characterized by optical microscopy. The phases of this alloy were identified by X-ray diffraction. The microstructure of Mg-4Al consists of α-Mg and grain boundaries with precipitated phase particles. With the addition of Lanthanum, three distinct phases were identified in the X-ray diffraction patterns of the as cast Mg-4Al-1.5La: Mg, Al11La3, Al4La. The Mg17Al12 phase was not detected. The addition of Lanthanium increases the hardness and dec
... Show MoreThis paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T
In this study, the effect of construction joints on the performance of reinforced concrete beams was experimentally investigated. Seven beam specimens, with dimensions of 200×100×1000 mm, were fabricated. The variables were considered including; the location and configuration of the joints. One beam was cast without a joint (Reference specimen), two specimens were fabricated with a one horizontal joint located either at tension, or compression zone. The fourth
beam had two horizontal joints placed at tension, and compression area. The remaining specimens were with one or two inclined joints positioned at the shear span or beam’s mid-span. The specimens were subjected to a monotonic central concentrated loading until the failure. T
The general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and ful
In this study, Epoxy Resin plates was prepared by mixing epoxy(A) and hardner(B)with ratio(A:B) (3:1) with different thickness (0.3-0.96)cm. The effect of thickness on optical properties have been studied (absorption ,transmission ,reflectance) also the optical constant were found like (absorption coefficient, extenuation coefficient and refraction index) for all of the prepared plates. The results have shown that by increasing the thickness of plates., the absorption intensity increase in which at plates thickness (0.3-0.96)cm the absorption intensity were(1.54-1.43) respectively, and since absorption peak for epoxy occur in ultraviolet region and exactly at wavelength(368)nm and energy gap(Eg=3.05 eV) thus their good transmittance in the
... Show More