Antimicrobial resistance is one of the most significant threats to public health worldwide. As opposed to using traditional antibiotics, which are effective against diseases that are multidrug-resistant, it is vital to concentrate on the most innovative antibacterial compounds. These innate bacterial arsenals under the term «bacteriocins» refer to low-molecularweight, heat-stable, membrane-active, proteolytically degradable, and pore-forming cationic peptides. Due to their ability to attack bacteria, viruses, fungi, and biofilm, bacteriocins appear to be the most promising, currently accessible alternative for addressing the antimicrobial resistance (AMR) problem and minimizing the negative effects of antibiotics on the host’s microbiome. Nano-compounds have shown promise in a variety of applications, including antibacterial agents, drug delivery systems, food and drug packaging elements, functional food formulations, and many more. However, there are certain disadvantages in the chemical production of nanoparticles (NPs), such as toxicity and other negative impacts. Due to the dual action of biological sources combined with metallic NPs, the use of conjugated or green-synthesized nanoparticles has become more widespread during the past ten years. Recently, bacteriocin nanoparticles have emerged as a viable remedy and the most effective antibacterial agent in vitro to overcome some of these limitations.
We have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the
... Show MoreIn this work, the dyes Rhodamine B and Coumarin 102 containing titanium dioxide nanoparticles were used as scattering centers to fabricate a random gain medium. The laser dye was dissolved in hexanol and methanol solvent respectively. The titanium dioxide nanoparticles were synthesized by DC reaction magnetron spraying technique. The random-gain medium was made by adding 2.5 mg of titanium dioxide nanoparticles to Rhodamine and coumarin 102 dyes by coating the glass cell with two-sided titanium dioxide with high spectral efficiency and low production cost. A narrow line optical emission was detected at 565 nm for Rhodamine B and 534 nm for coumarin 102, where it was found that rhodamine B dye has FWHM 8 nm and coumarin dye 102 has FWHM 9 nm
... Show MoreThis assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
This assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
The objective of the present investigation was to enhance the solubility of practically insoluble mirtazapine by preparing nanosuspension, prepared by using solvent anti solvent technology. Mirtazapine is practically insoluble in water which act as antidepressant .It was prepared as nano particles in order to improve its solubility and dissolution rate. Twenty formulas were prepared and different stabilizing agents were used with different concentrations such as poly vinyl pyrrolidone (PVPK-90), poly vinyl alcohol (PVA), poloxamer 188 and poloxamer 407. The ratios of drug to stabilizers used to prepare the nanoparticles were 1: 1 and 1:2. The prepared nanoparticles were evaluated for
... Show MoreNon-Small Cell Lung Cancer (NSCLC) accounts for about 84% of all lung cancer types diagnosed so far. Every year, regardless of gender, the NSCLC targets many communities worldwide. 5-Fluorouracil (5-FU) is a uracil-analog anticancer compound. This drug tends to annihilate multiple tumour cells. But 5-FU's most significant obstacle is that it gets very easily metabolized in the blood, which eventually leads to lower anticancer activity. Therfore a perfect drug delivery system is needed to overcome all the associated challenges.
In this experiment, an attempt was made to prepare 5-FU loaded poly lactic-co-glycolic acid nanoparticles using solvent evaporation method and subsequently observed the effect of molecular weight of poly l
... Show More