Antimicrobial resistance is one of the most significant threats to public health worldwide. As opposed to using traditional antibiotics, which are effective against diseases that are multidrug-resistant, it is vital to concentrate on the most innovative antibacterial compounds. These innate bacterial arsenals under the term «bacteriocins» refer to low-molecularweight, heat-stable, membrane-active, proteolytically degradable, and pore-forming cationic peptides. Due to their ability to attack bacteria, viruses, fungi, and biofilm, bacteriocins appear to be the most promising, currently accessible alternative for addressing the antimicrobial resistance (AMR) problem and minimizing the negative effects of antibiotics on the host’s microbiome. Nano-compounds have shown promise in a variety of applications, including antibacterial agents, drug delivery systems, food and drug packaging elements, functional food formulations, and many more. However, there are certain disadvantages in the chemical production of nanoparticles (NPs), such as toxicity and other negative impacts. Due to the dual action of biological sources combined with metallic NPs, the use of conjugated or green-synthesized nanoparticles has become more widespread during the past ten years. Recently, bacteriocin nanoparticles have emerged as a viable remedy and the most effective antibacterial agent in vitro to overcome some of these limitations.
Powder of silver nanoparticles was prepared by Sol - Gel method successfully using silver nitrate , (AgNO3) gesture is added to sodium citrate (C6H5O7Na3) as a reducing agent and by using Magnetic Stirrer to mix the solutions and heated then using centrifuge machine to separate the silver nanoparticles from solution .It is then dried in an oven at a temperature 40oC for 24 hours. Structure characteristics was studied , the synthetic silver powder was prepared through the use of an (XRD). Results showed the composition of silver nanoparticles is a (fcc) and a constant lattice (4.086 ± 0.006 Å) by comparing it with standard tables (JCPDS) which is found perfectly matched to file with a number 04-0783, which
... Show MoreFunctionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreNanoparticles generation by laser ablation of a solid target in a liquid environment is an easy method. Cadmium Telluride (CdTe) colloidal nanoparticles have been synthesized by laser ablation Nd:YAG with wavelengths of 1064nm and double frequency at 532 nm, number of pulses 50 pulses, with pulse energy= 620mJ, 700mJ of a solid target CdTe is immersed in double distilled deionized water (DDIW) and in methanol liquid. Influences of the laser energy and different solutions on the formation and optical characterization of the CdTe nanoparticles have been studied using atomic force microscope (AFM) and the UV-Vis absorption. As a results, it leads to the absorbance in UV-Vis spectra of samples prepared in water at laser wavelength of 532nm i
... Show MoreIn the present work, silver nanoparticles were prepared. Nonlinear optical properties and
optical limiting of silver nanoparticles were investigated.Standard chemical synthesis method was used at
diffrent weight ratio(0.038, 0.058 and 0.078) of silver nitrate. Several testing were done to obtain the
characteristics of the sample. Z-Scan experiments were performed using 30 ns Q-switched Nd:YAG
laser at 1064 nm and 532 nm at different intensities. The results showed that the nonlinear refractive
index is directly proportional to the input intensities, which caused by the self-focusing of the material.
In addition, the optical limiting behavior has been studied. The results showed that the sample could be
used as an opt
1267 Objectives Aim to evaluate 198Au nanoparticles (AuNP) biodistribution and uptake in a human prostate model for treatment. Many phytochemicals are known to have anti-tumor properties but have short half-lives in vivo. We hypothesized that using these phytochemicals to formulate and coat AuNP would inhibit enzyme cleavage and enhance their anti-tumor properties. Initial evaluations were performed in SCID mice bearing PC3 tumors. Methods : 198AuNP were formulated with the following gum Arabic, epigalocatechin gallate (EGCg) pomegranate extract and mangiferin extract. The resultant nanoparticles were evaluated in normal mice and in human prostate bearing SCID mice. The tumor bearing mice were injected intratumorally with 3-5 uCi of 198A
... Show MoreIn the present work, a z-scan technique was used to study the nonlinear optical properties, represented by the nonlinear refractive index and nonlinear absorption coefficients of nanoparticles cadmium sulfide thin film. The sample was prepared by the chemical bath deposition method. Several testing were done including, x-ray, transmission and thickness of thin film. z-Scan experiment was performed at two wavelengths (1064 nm and 532 nm) and different energies. The results showed the effect of self-focusing in the material at higher intensities, which evaluated n2 to be (0.11-0.16) cm2/GW. The effect of two-photon absorption was studied, which evaluated β to be (24-106) cm/GW. In addition, the optical limiting behavior has been studied.
... Show MorePhase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha
... Show MoreIn this work, a magnetic switch was prepared using two typesof ferrofluid materials, the pure ferrofluid and ferrofluid doped with copper nanoparticles (10 nm). The critical magnetic field (Hc) and the state of magnetic saturation (Hs) were studied using three types of laser sources. The main parameters of the magnetic switch measured using pure ferrofluid and He-Ne Laser source were Hc(0.5 mv, 0.4 G), Hs (8.5 mv, 3 G). For the ferrofluid doped with copper nanoparticles were Hc (1 mv, 4 G), Hs (15 mv, 9.6 G), Using green semiconductor laser for the Pure ferrofluid were Hc (0.5 mv, 0.3 G) Hs (15 mv, 2.9 G). While the ferrofluid doped with copper nanoparticles were Hc (0.5 mv, 1 G), Hs (12 mv, 2.8 G) and by using the violet semiconductor l
... Show MoreThe synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
Nano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show More