Preferred Language
Articles
/
oBe1uI4BVTCNdQwCyFf7
Bayesian Computational Methods of the Logistic Regression Model
...Show More Authors
Abstract<p>In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.</p>
Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 04 2025
Journal Name
Misan Journal Of Academic Studies
Some of Parametric and Non Parametric Estimations for Circular Regression Model via Simulation
...Show More Authors

Circular data (circular sightings) are periodic data and are measured on the unit's circle by radian or grades. They are fundamentally different from those linear data compatible with the mathematical representation of the usual linear regression model due to their cyclical nature. Circular data originate in a wide variety of fields of scientific, medical, economic and social life. One of the most important statistical methods that represents this data, and there are several methods of estimating angular regression, including teachers and non-educationalists, so the letter included the use of three models of angular regression, two of which are teaching models and one of which is a model of educators. ) (DM) (MLE) and circular shrinkage mod

... Show More
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Use Of the Bayesian Method and Restricted Maximum Likelihood in estimating of mixed Linear Components with random effects model with practical application.
...Show More Authors

In this research we study a variance component model, Which is the one of the most important models widely used in the analysis of the data, this model is one type of a multilevel models, and it is considered as linear models , there are three types of linear variance component models ,Fixed effect of linear variance component model, Random effect of linear variance component model and Mixed effect of linear variance component model . In this paper we will examine the model of mixed effect of linear variance component model with one –way random effect ,and the mixed model is a mixture of fixed effect and random effect in the same model, where it contains the parameter (μ) and treatment effect (τi ) which  has

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
"Compared some of the semi-parametric methods in analysis of single index model "
...Show More Authors

As the process of  estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying  model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimations methods of the entropy function to the random coefficients for two models: the general regression and swamy of the panel data
...Show More Authors

In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.

The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposed method to estimate missing values in Non - Parametric multiple regression model
...Show More Authors

In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.

 

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
About Semi-parametric Methodology for Fuzzy Quantile Regression Model Estimation: A Review
...Show More Authors

In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce

Paper Type: Review article.

another suggestion based on artificial neural networks.

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 02 2011
Journal Name
Ibn Al-haithem Journal For Pure And Applied Sciences
On modified pr-test double stage shrinkage estimators for estimate the parameters of simple linear regression model
...Show More Authors

Publication Date
Sun Apr 16 2023
Journal Name
Iraqi Journal For Computer Science And Mathematics
Some Methods to Estimate the Parameters of Generalized Exponential Rayleigh Model by Simulation
...Show More Authors

This paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random
...Show More Authors

Abstract

 The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .

The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation

... Show More
View Publication Preview PDF
Crossref