Background: Menstrual problems with all manifestations ranging from life-threatening bleeding to amen- orrhea are considered patterns of abnormal uterine bleeding (AUB), which is until now a popular reason for referral to the gynaecologic clinic and requires a special diagnostic tool. Objective: To assess the accuracy of hysteroscopy in diagnosing endometrial pathologies and to compare it with sonographic and histopathologic reports. Patients and Methods: A prospective study conducted in the Baghdad Teaching Hospital on 60 Iraqi females having varying complaints from abnormal uterine bleeding in pre- and post-menopausal women, infertility, and chronic pelvic pain with normal or abnormal ultrasound findings. Office hysteroscopy was done and an endometrial biopsy was obtained for histopathology for a period of 10 months between September 2020 and June 2021. Results: The current study showed that hysteroscopy was more accurate in diagnosing sensitivity of endo- metrial poly (100%), fibroids (83%), hyperplasia (84.2%), and cancer (50%) whereas ultrasounds were more accurate in diagnosing sensitivity to endometrial myoma (90%). Hysteroscopy and ultrasound showed low sensitivity in detecting endometrial cancer (50% and 34%, respectively). Conclusion: Although a transvaginal ultrasound was considered an integral part in the diagnosis of endo- metrial pathologies, it can be used for initial investigation, however, when suspecting endometrial pathol- ogy, hysteroscopy can be more advanced for evaluation, immediate treatment of endometrial masses, and obtaining targeted biopsies. Hysteroscopy showed high sensitivity in detecting endometrial polyps.
Incremental Sheet Metal Forming (ISMF) is a modern sheet metal forming technology which offers the possibility of manufacturing 3D complex parts of thin sheet metals using the CNC milling machine. The surface quality is a very important aspect in any manufacturing process. Therefore, this study focuses on the resultant residual stresses by forming parameters, namely; (tool shape, step over, feed rate, and slope angle) using Taguchi method for the products formed by single point incremental forming process (SPIF). For evaluating the surface quality, practical experiments to produce pyramid like shape have been implemented on aluminum sheets (AA1050) for thickness (0.9) mm. Three types of tool shape used in this work, the spherical tool ga
... Show MoreThis study investigates the possibility of removing ciprofloxacin (CIP) using three types of adsorbent based on green-prepared iron nanoparticles (Fe.NPs), copper nanoparticles (Cu. NPS), and silver nanoparticles (Ag. NPS) from synthesized aqueous solution. They were characterized using different analysis methods. According to the characterization findings, each prepared NPs has the shape of a sphere and with ranges in sizes from of 85, 47, and 32 nanometers and a surface area of 2.1913, 1.6562, and 1.2387 m2/g for Fe.NPs, Cu.NPs and Ag.NPs, respectively. The effects of various parameters such as pH, initial CIP concentration, temperature, NPs dosage, and time on CIP removal were investigated through batch experiments. The res
... Show MoreThe economic units always sought to maintain its market position and Trchinh the technology management and modern methods that will support success factors .vdila about it has become a customer and one profitability analysis of the most practical way benefit of economic units as modern management focus their attention on achieving this satisfaction, as the customers make up the axis of the success of every organization and that there are many government units aiming to profit directs attention to customers and the number of these units increased continuously. The administration used the customer profitability analysis in order to obtain information to assist in making and decision-making process. How to use modern tec
... Show MoreThe ABO blood group system is highly polymorphic, with more than 20 distinct sub-groups; study findings are usually related to ABO phenotype, but rarely to the ABO genotype and animal models are unsatisfactory because their antigen glycosylation structure is different from humans. Both the ABO and Rh blood group systems have been associated with a number of diseases, but this is more likely related to the presence or absence of these tissue antigens throughout the body and not directly or primarily related to their presence on RBCs. A total of fifty-two 52 patients without complication of DMII, two hundred sixteen 216 patients with complication of DMII and seventy-one 71 person as healthy control were included in the study. The resu
... Show MoreDue to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MoreThis paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show
... Show More