Abstract: In recent times, global attention has increasingly focused on the critical issue of environmental sustainability, owing to escalating environmental degradation exacerbated by the utilization of green spaces and technological innovation. This phenomenon necessitates thorough examination, prompting the present study to scrutinize the impact of various factors, namely green spaces, technological innovation, environmental taxes, renewable energy consumption (REC), inflation, and economic growth (EG), on environmental sustainability within the context of Iraq. Secondary data extracted from the World Development Indicators (WDI) spanning the period from 1991 to 2022 served as the foundation for this investigation. Methodologically, the
... Show MoreIn this paper harmful phytoplankton and herbivorous zooplankton model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation.
Low bearing capacity of weak soil under shallow footings represents one of construction problems.
Kaolin with water content converges to liquid limit used to represent the weak soil under shallow
footing prototype. On the other hand, fly ash, which can be defined as undesirable industrial waste
material, was used to improve the bearing capacity of the soft soil considered in this research. The soft
soil was prepared in steel box (36×36×25) cm and shallow square footing prototype (6×6) cm were
used .Group of physical and chemical tests were conducted on kaolin and fly ash. The soft soil was
improved by a bed of compacted fly ash placed under the footing with dimensions equal to that of
footing but with different de
Experimental tests were conducted to study the behavior of skirted foundations rested on dry medium sandy soil subjected to vertical and inclined loads. To achieve this goal, a small-scale physical model was designed and performed which contained an aluminum circular footing (100 mm) in diameter and (10 mm) in thickness and skirts with different heights, local medium poorly graded dry sand is placed in a steel soil container (2 mm) thick with internal dimensions (1000 mm x 1000 mm in cross section and 800 mm in height). The main objective of this study was to evaluate the response of skirt attached to the foundation at different skirt (L/D) ratios (0.0, 0.5, 1.0 and 1.5) and is subjected to point load at different angles of inclinat
... Show MoreSalah Al-Din Provence is an active agriculture and population region. One of its primary water sources is groundwater, which suffers from a lack of information regarding water quality and hydrochemistry. In order to study those missing variables, 27 samples from wells of shallow tubes were collected for analyzing the relevant physicochemical indices that help to produce the Schoeller index, Piper diagram, and Gibbs plot. Piper diagram revealed a hydrochemistry behavior of different values along with the groundwater samples. The chemistry of wells was controlled primarily by the evaporation process according to the Gibbs plot. The values of the Schoeller index of the studied samples stated that 59% of
This study experimentally investigated Free-Fall Gravity Drainage (FFGD) under combination-drive conditions in a two-dimensional Hele-Shaw model representing a water-drive reservoir. An initially high gravity potential from the oil column enabled early oil drainage before aquifer support became dominant. Three water-drive strengths were tested, demonstrating that a stronger aquifer (1.15 psig) accelerated oil recovery to approximately 75% of the original oil in place (OOIP) within 60 minutes, resulting in a final recovery of 79.5%. However, this was accompanied by rapid water breakthrough after 2.5 minutes and high-water cuts exceeding 90%. In contrast, a weaker aquifer (0.725 psig) stabilized the oil–water contact, delaying w
... Show More